
Shicheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175144/publications.pdf Version: 2024-02-01

SHICHENC ZHAO

#	Article	IF	CITATIONS
1	A highly active novel β-nucleating agent for isotactic polypropylene. Polymer, 2008, 49, 2745-2754.	3.8	183
2	Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 653-665.	2.1	56
3	Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). Journal of Materials Science, 2020, 55, 14642-14655.	3.7	39
4	In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene. Chemical Engineering Journal, 2019, 358, 1243-1252.	12.7	35
5	Ultrathin 2D metal–organic framework nanosheets prepared <i>via</i> sonication exfoliation of membranes from interfacial growth and exhibition of enhanced catalytic activity by their gold nanocomposites. RSC Advances, 2019, 9, 9386-9391.	3.6	31
6	A cell-free therapy for articular cartilage repair based on synergistic delivery of SDF-1 & KGN with HA injectable scaffold. Chemical Engineering Journal, 2020, 393, 124649.	12.7	31
7	A photosensitive metal–organic framework having a flower-like structure for effective visible light-driven photodegradation of rhodamine B. RSC Advances, 2021, 11, 18565-18575.	3.6	31
8	Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene. Polymer Engineering and Science, 2015, 55, 251-259.	3.1	30
9	Relationship between molecular structure, crystallization behavior, and mechanical properties of long chain branching polypropylene. Journal of Materials Science, 2016, 51, 5598-5608.	3.7	29
10	Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 632-641.	2.1	26
11	In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer, 2018, 151, 84-91.	3.8	24
12	High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Research, 2019, 12, 2736-2742.	10.4	23
13	Wear Resistance Mechanism of Ultrahigh-Molecular-Weight Polyethylene Determined from Its Structure–Property Relationships. Industrial & Engineering Chemistry Research, 2019, 58, 19519-19530.	3.7	21
14	A highly active and selective βâ€nucleating agent for isotactic polypropylene and crystallization behavior of βâ€nucleated isotactic polypropylene under rapid cooling. Journal of Applied Polymer Science, 2016, 133, .	2.6	20
15	A novel self-dispersed Î ² nucleating agent for isotactic polypropylene and its unique nucleation behavior and mechanism. Polymer, 2017, 132, 69-78.	3.8	20
16	A novel highly efficient βâ€nucleating agent for isotactic polypropylene. Journal of Applied Polymer Science, 2012, 123, 108-117.	2.6	19
17	Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 737-755.	3.5	16
18	Mechanism of boron carbide particles improving the wear resistance of UHMWPE: Structure-property relationship. Polymer, 2022, 245, 124733.	3.8	16

SHICHENG ZHAO

#	Article	lF	CITATIONS
19	Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts. Journal of Applied Polymer Science, 2009, 112, 1471-1480.	2.6	15
20	The Crystallization Behavior of Isotactic Polypropylene Induced by a Novel Antinucleating Agent and Its Inhibition Mechanism of Nucleation. Industrial & Engineering Chemistry Research, 2015, 54, 7650-7657.	3.7	15
21	Shear-induced β -form polypropylene in long chain branching isotactic polypropylene. Polymer Engineering and Science, 2016, 56, 240-247.	3.1	15
22	An effective nucleating agent for isotactic polypropylene (iPP): Zinc bis- (nadic anhydride) double-decker silsesquioxanes. Polymer, 2021, 220, 123574.	3.8	15
23	Preparation and foaming mechanism of foamable polypropylene based on self-assembled nanofibrils from sorbitol nucleating agents. Journal of Materials Science, 2016, 51, 788-796.	3.7	13
24	Rheological, crystallization and foaming behaviors of high melt strength polypropylene in the presence of polyvinyl acetate. Journal of Polymer Research, 2018, 25, 1.	2.4	13
25	Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene. Frontiers of Chemical Science and Engineering, 2016, 10, 396-404.	4.4	12
26	Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites. RSC Advances, 2018, 8, 20790-20800.	3.6	12
27	Combined effect of organic phosphate sodium and nanoclay on the mechanical properties and crystallization behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2012, 123, 617-626.	2.6	11
28	Nucleation effects of zinc adipate as β-Nucleating agent in ethylene-propylene block copolymerized polypropylene. Journal of Polymer Research, 2017, 24, 1.	2.4	11
29	The effects of octadecylamine functionalized multi-wall carbon nanotubes on the conductive and mechanical properties of ultra-high molecular weight polyethylene. Journal of Polymer Research, 2018, 25, 1.	2.4	11
30	Control of thermal degradation of poly(lactic acid) using functional polysilsesquioxane microspheres as chain extenders. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
31	Controllable preparation of SB-3CT loaded PLGA microcapsules for traumatic-brain-injury pharmaco-therapy. Chemical Engineering Journal, 2018, 339, 346-358.	12.7	10
32	A Novel Strategy for Achieving High Melt Strength Polypropylene and an Investigation of Its Foamability. Journal of Macromolecular Science - Physics, 2014, 53, 1695-1714.	1.0	9
33	A novel β-nucleating agent for isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2029-2040.	3.6	9
34	Structural Relationships between Zinc Hexahydrophthalate and the β Phase of Isotactic Polypropylene. Industrial & Engineering Chemistry Research, 2020, 59, 18529-18538.	3.7	9
35	Mechanism of size effects of a filler on the wear behavior of ultrahigh molecular weight polyethylene. Chinese Journal of Chemical Engineering, 2020, 28, 1950-1963.	3.5	9
36	Failure mechanism of zinc adipate as a β-nucleating agent for polypropylene in the presence of calcium stearate. Polymer, 2021, 215, 123374.	3.8	9

SHICHENG ZHAO

#	Article	IF	CITATIONS
37	Conformation order of poly(l-lactic acid) chains during the melt crystallization process: infrared and two-dimensional infrared correlation spectroscopy study. Journal of Materials Science, 2016, 51, 4880-4887.	3.7	8
38	Effect of the Metal Phenylphosphonates on the Nonisothermal Crystallization and Performance of Isotactic Polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 161-173.	2.1	8
39	Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer. Journal of Polymer Research, 2019, 26, 1.	2.4	8
40	Influence of lanthanum stearate on the crystallization behavior of isotactic polypropylene. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 628-634.	1.5	7
41	13X zeolite as Difunctional nucleating agent regulating the crystal form and improving the Foamability of blocked copolymerized polypropylene in supercritical CO2 foaming process. Journal of Polymer Research, 2019, 26, 1.	2.4	7
42	The mechanical properties, crystallization and rheological behavior of isotactic polypropylene with nucleating agent supported on polyhedral oligomeric silsesquioxanes (POSS). Journal of Polymer Research, 2020, 27, 1.	2.4	7
43	Zinc pimelate as an effective βâ€nucleating agent for isotactic polypropylene at elevated pressures and under rapid cooling rates. Polymer Crystallization, 2020, 3, e10132.	0.8	7
44	Relationship between Peroxide Initiators and Properties of Styrene Grafted Polypropylene via Reactive Extrusion. Journal of Macromolecular Science - Physics, 2018, 57, 377-394.	1.0	6
45	Effect of an active β-nucleating agent on the crystallization behavior of polypropylene random copolymer. Journal of Polymer Research, 2022, 29, 1.	2.4	6
46	The nucleation effect of self-dispersed β-nucleating agent in ethylene-propylene block copolymerized polypropylene. Colloid and Polymer Science, 2018, 296, 1627-1633.	2.1	5
47	Effect of the lanthanum and cerium phenylphosphonates on the crystallization and mechanical properties of isotactic polypropylene. Journal of Polymer Research, 2021, 28, 1.	2.4	5
48	Viscoelasticity, Tensile Properties, and Microstructure Development in Cyclic Olefin Copolymer/Polyolefin Elastomer Blends. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	5
49	Hygroscopic Hydrogels for Removal of Trace Water from Liquid Fuels. Industrial & Engineering Chemistry Research, 2021, 60, 17065-17071.	3.7	3
50	Unique crystallization behavior of isotactic polypropylene in the presence of <scp>l</scp> â€isoleucine and its inhibition and promotion mechanism of nucleation. Journal of Applied Polymer Science, 2018, 135, 45956.	2.6	2
51	Calcium Salt of L-Isoleucine-Phthalate: An α-Nucleating Agent That Enhances the Crystallization Behavior and Mechanical Properties of Isotactic Polypropylene. Journal of Macromolecular Science - Physics, 2021, 60, 531-543.	1.0	2
52	A one-step deposition method to prepare separators with carbon soot loading for lithium-sulfur battery. lonics, 2022, 28, 1693-1700.	2.4	2
53	Chain disentanglement in POSS/UHMWPE composites prepared via in-situ polymerization. Journal of Polymer Research, 2022, 29, 1.	2.4	2
54	The effect of bicyclo[2.2.1]heptâ€5â€eneâ€2,3â€dicarboxylate on the mechanical properties and crystallization behaviors of isotactic polypropylene. Journal of Applied Polymer Science, 2010, 116, 792-800.	2.6	1

#	Article	IF	CITATIONS
55	Effects of zinc isophthalate on the crystallization and crystal transformation behavior of polybutene alloy. Journal of Polymer Research, 2022, 29, 1.	2.4	0