Arseniy E Yuzhalin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipokine gene expression in adipocytes isolated from different fat depots of coronary artery disease patients. Archives of Physiology and Biochemistry, 2022, 128, 261-269.	1.0	8
2	Vitamin E Enhances Cancer Immunotherapy by Reinvigorating Dendritic Cells via Targeting Checkpoint SHP1. Cancer Discovery, 2022, 12, 1742-1759.	7.7	35
3	Calciprotein Particles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1607-1624.	1.1	40
4	Parallels between the extracellular matrix roles in developmental biology and cancer biology. Seminars in Cell and Developmental Biology, 2021, , .	2.3	7
5	State-of-the-art technology for cardiovascular research. Complex Issues of Cardiovascular Diseases, 2021, 10, 103-108.	0.3	1
6	Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. International Journal of Molecular Sciences, 2021, 22, 12458.	1.8	7
7	Brain Metastasis Organotropism. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037242.	2.9	26
8	Biocompatible Nanocomposites Based on Poly(styrene-block-isobutylene-block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers, 2020, 12, 2158.	2.0	16
9	Biodegradable Patches for Arterial Reconstruction Modified with RGD Peptides: Results of an Experimental Study. ACS Omega, 2020, 5, 21700-21711.	1.6	7
10	Degeneration of Bioprosthetic Heart Valves: Update 2020. Journal of the American Heart Association, 2020, 9, e018506.	1.6	150
11	Mitomycin C induced genotoxic stress in endothelial cells is associated with differential expression of proinflammatory cytokines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 858-860, 503252.	0.9	18
12	Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers, 2020, 12, 3331.	1.7	60
13	A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep. Pharmaceuticals, 2020, 13, 101.	1.7	15
14	Abstract 3947: Mass-spectrometry analysis of metastatic matrisome from MC38 experimental liver metastasis. , 2020, , .		0
15	Finite Element Analysis-Based Approach for Prediction of Aneurysm-Prone Arterial Segments. Journal of Medical and Biological Engineering, 2019, 39, 102-108.	1.0	6
16	Proteomics analysis of the matrisome from MC38 experimental mouse liver metastases. American Journal of Physiology - Renal Physiology, 2019, 317, G625-G639.	1.6	7
17	Development of calcific aortic valve disease: Do we know enough for new clinical trials?. Journal of Molecular and Cellular Cardiology, 2019, 132, 189-209.	0.9	68
18	Tumour-Derived Laminin α5 (LAMA5) Promotes Colorectal Liver Metastasis Growth, Branching Angiogenesis and Notch Pathway Inhibition. Cancers, 2019, 11, 630.	1.7	52

#	Article	IF	CITATIONS
19	Citrullination in Cancer. Cancer Research, 2019, 79, 1274-1284.	0.4	96
20	Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification. Polymers, 2019, 11, 174.	2.0	20
21	Extract of the Herb Hedysarum Alpinum L. as a Component of Functional Food Products with Cardioprotective Properties. Food Industry, 2019, 4, 52-57.	0.3	0
22	A core matrisome gene signature predicts cancer outcome. British Journal of Cancer, 2018, 118, 435-440.	2.9	100
23	Shear stress: An essential driver of endothelial progenitor cells. Journal of Molecular and Cellular Cardiology, 2018, 118, 46-69.	0.9	51
24	Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nature Communications, 2018, 9, 4783.	5.8	134
25	Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Molecular Medicine, 2018, 10, .	3.3	64
26	Whole-Transcriptome Sequencing: A Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology. High-Throughput, 2018, 7, 5.	4.4	6
27	Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 207-228.	3.3	102
28	Criteria for standartization of probiotic components in functional food products. Foods and Raw Materials, 2018, 6, 457-466.	0.8	2
29	MASS SPECTROMETRY OF PROTEINS EXTRACTED FROM PLAQUE-DERIVED CALCIUM PHOSPHATE BIONS. Fundamental and Clinical Medicine, 2018, 3, 12-19.	0.1	0
30	PROTEOMIC COMPARISON OF EXTRACELLULAR MATRIX WITHIN LIVER METASTASES OF COLORECTAL CANCER AND NORMAL LIVER. Fundamental and Clinical Medicine, 2018, 3, 16-21.	0.1	1
31	Abstract 998: Radiation-induced immunosuppressive macrophages limit CD8 T-cell mediated tumor killing. Cancer Research, 2018, 78, 998-998.	0.4	1
32	RS13290979 POLYMORPHISM WITHIN NOTCH1 GENE IS ASSOCIATED WITH SEVERE BIOPROSTHETIC MITRAL VALVE CALCIFICATION. Fundamental and Clinical Medicine, 2018, 3, 12-21.	0.1	1
33	Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2–dependent angiogenesis in mice. Hepatology, 2017, 65, 1920-1935.	3.6	92
34	Association of DNA repair gene polymorphisms with genotoxic stress in underground coal miners. Mutagenesis, 2017, 32, 501-509.	1.0	22
35	Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI. International Journal of Biomedical Engineering and Technology, 2017, 25, 44.	0.2	9
36	Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis. Mediators of Inflammation, 2017, 2017, 1-21.	1.4	10

#	Article	IF	CITATIONS
37	POLYMORPHISMS WITHIN INNATE IMMUNE RESPONSE, CALCIUM METABOLISM AND LIPID METABOLISM ARE PREDICTORS OF INFECTIVE ENDOCARDITIS. Russian Journal of Infection and Immunity, 2017, 7, 130-140.	0.2	1
38	Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI. International Journal of Biomedical Engineering and Technology, 2017, 25, 44.	0.2	2
39	Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget, 2016, 7, 28697-28710.	0.8	378
40	A Genomics-Based Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification. International Journal of Molecular Sciences, 2016, 17, 1385.	1.8	8
41	Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Scientific Reports, 2016, 6, 27255.	1.6	37
42	Association of TLR and TREM-1 gene polymorphisms with atherosclerosis severity in a Russian population. Meta Gene, 2016, 9, 76-89.	0.3	32
43	Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene, 2016, 35, 5735-5745.	2.6	151
44	Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis. Computers in Biology and Medicine, 2016, 69, 29-36.	3.9	36
45	Editorial: Pattern Recognition Receptors and Cancer. Frontiers in Immunology, 2015, 6, 481.	2.2	9
46	Editorial: recent discoveries in evolutionary and genomic microbiology. Frontiers in Microbiology, 2015, 6, 323.	1.5	3
47	Interleukin-12 Superfamily and Cancer. , 2015, , 223-260.		0
48	Macrophage migration inhibitory factor: A key cytokine and therapeutic target in colon cancer. Cytokine and Growth Factor Reviews, 2015, 26, 451-461.	3.2	50
49	Interleukin-1 Superfamily and Cancer. , 2015, , 17-61.		0
50	Interleukin-2 Superfamily and Cancer. , 2015, , 63-89.		0
51	Interleukin-3, Interleukin-5, and Cancer. , 2015, , 91-116.		1
52	The Rest of Interleukins. , 2015, , 291-318.		1
53	Interleukin-17 Superfamily and Cancer. , 2015, , 261-289.		0
54	IL-6 Family and Cancer. , 2015, , 117-146.		4

#	Article	IF	CITATIONS
55	An association between single nucleotide polymorphisms within TLR and TREM-1 genes and infective endocarditis. Cytokine, 2015, 71, 16-21.	1.4	28
56	Interleukin-10 Superfamily and Cancer. , 2015, , 147-222.		0
57	Calcifying nanoparticles: one face of distinct entities?. Frontiers in Microbiology, 2014, 5, 214.	1.5	6
58	Pattern Recognition Receptors and DNA Repair: Starting to Put a Jigsaw Puzzle Together. Frontiers in Immunology, 2014, 5, 343.	2.2	13
59	Correlation between genetic polymorphisms within IL-1B and TLR4 genes and cancer risk in a Russian population: a case-control study. Tumor Biology, 2014, 35, 4821-4830.	0.8	54
60	Association of TLR and TREM-1 gene polymorphisms with risk of coronary artery disease in a Russian population. Gene, 2014, 550, 101-109.	1.0	38
61	Computer-aided design of the human aortic root. Computers in Biology and Medicine, 2014, 54, 109-115.	3.9	17
62	Genetic predisposition to calcific aortic stenosis and mitral annular calcification. Molecular Biology Reports, 2014, 41, 5645-5663.	1.0	19
63	Mimiviridae, Marseilleviridae, and virophages as emerging human pathogens causing healthcare-associated infections. GMS Hygiene and Infection Control, 2014, 9, Doc16.	0.2	7
64	A Hypothesis of Virus-Driven Atherosclerosis. SpringerBriefs in Immunology, 2013, , 1-3.	0.1	2
65	The Role of Bacteria in Cancer Development. , 2013, , 5-78.		0
66	Structural Genomic Variation in Toll-Like Receptor Signaling Pathway and Cancer. , 2013, , 77-100.		0
67	Infectious Agents and Cancer. , 2013, , .		4
68	Organ Microbiota in Cancer Development: The Holy Grail of Biological Carcinogenesis. , 2013, , 93-109.		0
69	Genomics of Pattern Recognition Receptors. , 2013, , .		2
70	The Role of Epstein-Barr Virus in Atherosclerosis and Related Diseases. SpringerBriefs in Immunology, 2013, , 21-33.	0.1	1
71	Hepatitis Viruses, Atherosclerosis, and Related Diseases. SpringerBriefs in Immunology, 2013, , 49-63.	0.1	1
72	The Biology of Toll-Like Receptors and NOD-Like Receptors: The Toggles of Inflammation. , 2013, , 1-25.		2

#	Article	IF	CITATIONS
73	Pattern Recognition Receptors, Gene Polymorphisms, and Cancer: A Double-Edged Sword. , 2013, , 27-32.		1
74	The Role of Protozoa in Cancer Development. , 2013, , 79-87.		1
75	Structural Genomic Variation in TLR4 Gene and Cancer. , 2013, , 33-55.		Ο
76	The Role of Enteroviruses, Parvovirus B19, Respiratory Syncytial Virus, and Measles Virus in Atherosclerosis and Related Diseases. SpringerBriefs in Immunology, 2013, , 35-47.	0.1	0
77	The Role of Herpes Simplex Virus-1 and Herpes Simplex Virus-2 in Atherosclerosis. SpringerBriefs in Immunology, 2013, , 5-19.	0.1	0
78	Structural Genomic Variation in Pattern Recognition Receptors and Cardiovascular Diseases. , 2013, , 153-167.		0
79	Structural Genomic Variation in Other Toll-Like Receptors and Cancer. , 2013, , 57-76.		0
80	Structural Genomic Variation in NOD-Like Receptors and Cancer. , 2013, , 123-151.		0
81	Common Genetic Variants in the Myeloperoxidase and Paraoxonase Genes and the Related Cancer Risk: A Review. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2012, 30, 287-322.	2.9	20
82	The role of calcifying nanoparticles in biology and medicine. International Journal of Nanomedicine, 2012, 7, 339.	3.3	26
83	Are Toll-like receptor gene polymorphisms associated with prostate cancer?. Cancer Management and Research, 2012, 4, 23.	0.9	7
84	Inherited variation in pattern recognition receptors and cancer: dangerous liaisons?. Cancer Management and Research, 2012, 4, 31.	0.9	19
85	C-type lectin receptors and RIG-I-like receptors: new points on the oncogenomics map. Cancer Management and Research, 2012, 4, 39.	0.9	21
86	Integrative systems of genomic risk markers for cancer and other diseases: future of predictive medicine. Cancer Management and Research, 2012, 4, 131.	0.9	17
87	Inherited variations in the <i>SOD</i> and <i>GPX</i> gene families and cancer risk. Free Radical Research, 2012, 46, 581-599.	1.5	39
88	Interleukin-12: Clinical usage and molecular markers of cancer susceptibility. Growth Factors, 2012, 30, 176-191.	0.5	62
89	ABO and Rh Blood Groups in Relation to Ovarian, Endometrial and Cervical Cancer Risk Among The Population of South-East Siberia. Asian Pacific Journal of Cancer Prevention, 2012, 13, 5091-5096.	0.5	46
90	Colorectal Cancer Risk Factors among the Population of South-East Siberia: A Case-Control Study. Asian Pacific Journal of Cancer Prevention, 2012, 13, 5183-5188.	0.5	24

#	Article	IF	CITATIONS
91	Analysis of Cancer Incidence and Mortality in the Industrial Region of South-East Siberia from 1991 through 2010. Asian Pacific Journal of Cancer Prevention, 2012, 13, 5189-5193.	0.5	21
92	The role of interleukin DNA polymorphisms in gastric cancer. Human Immunology, 2011, 72, 1128-1136.	1.2	63