Davide Baratella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175063/publications.pdf

Version: 2024-02-01

39 1,053 papers citations

18 32
h-index g-index

43 43 docs citations

43 times ranked 1465 citing authors

#	Article	IF	CITATIONS
1	Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors. Chemistry of Materials, 2014, 26, 6653-6673.	3.2	140
2	A glucose biosensor based on surface active maghemite nanoparticles. Biosensors and Bioelectronics, 2013, 45, 13-18.	5. 3	63
3	Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles. Food Chemistry, 2016, 203, 505-512.	4.2	62
4	Magnetic Nanoparticles with Covalently Bound Self-Assembled Protein Corona for Advanced Biomedical Applications. Journal of Physical Chemistry C, 2013, 117, 20320-20331.	1.5	60
5	New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles. Current Medicinal Chemistry, 2018, 25, 540-555.	1.2	52
6	Avidin Functionalized Maghemite Nanoparticles and Their Application for Recombinant Human Biotinyl-SERCA Purification. Langmuir, 2012, 28, 15392-15401.	1.6	50
7	Electrochemical determination of hydrogen peroxide production by isolated mitochondria: A novel nanocomposite carbon–maghemite nanoparticle electrode. Sensors and Actuators B: Chemical, 2013, 176, 315-322.	4.0	50
8	A Magnetically Drivable Nanovehicle for Curcumin with Antioxidant Capacity and MRI Relaxation Properties. Chemistry - A European Journal, 2014, 20, 11913-11920.	1.7	48
9	Core–shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst. Biosensors and Bioelectronics, 2014, 52, 159-165.	5.3	46
10	Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Analytical and Bioanalytical Chemistry, 2018, 410, 2949-2959.	1.9	42
11	Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2802-2810.	1.1	38
12	Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis. Colloids and Surfaces B: Biointerfaces, 2016, 140, 40-49.	2.5	37
13	Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles. Advanced Functional Materials, 2015, 25, 1822-1831.	7.8	36
14	The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos. Scientific Reports, 2018, 8, 13017.	1.6	29
15	Stealth Iron Oxide Nanoparticles for Organotropic Drug Targeting. Biomacromolecules, 2019, 20, 1375-1384.	2.6	28
16	Ternary Hybrid γâ€Fe ₂ O ₃ /Cr ^{VI} /Amine Oxidase Nanostructure for Electrochemical Sensing: Application for Polyamine Detection in Tumor Tissue. Chemistry - A European Journal, 2016, 22, 6846-6852.	1.7	24
17	Endogenous and food-derived polyamines: determination by electrochemical sensing. Amino Acids, 2018, 50, 1187-1203.	1.2	22
18	Magnetic Purification of Curcumin from <i>Curcuma longa</i> Rhizome by Novel Naked Maghemite Nanoparticles. Journal of Agricultural and Food Chemistry, 2015, 63, 912-920.	2.4	21

#	Article	IF	Citations
19	Self-assembly of chlorin-e6 on \hat{I}^3 -Fe2O3 nanoparticles: Application for larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology, 2019, 194, 21-31.	1.7	20
20	Antimicrobial and magnetically removable tannic acid nanocarrier: A processing aid for Listeria monocytogenes treatment for food industry applications. Food Chemistry, 2018, 267, 430-436.	4.2	19
21	Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: A key for protein corona formation. International Journal of Biological Macromolecules, 2020, 164, 1715-1728.	3.6	17
22	Colloidal Surface Active Maghemite Nanoparticles for Biologically Safe Cr ^{VI} Remediation: from Coreâ€Shell Nanostructures to Pilot Plant Development. Chemistry - A European Journal, 2016, 22, 14219-14226.	1.7	16
23	Electrocatalytic Nanostructured Ferric Tannates: Characterization and Application of a Polyphenol Nanosensor. ChemPhysChem, 2016, 17, 3196-3203.	1.0	15
24	Electrocatalytic nanostructured ferric tannate as platform for enzyme conjugation: Electrochemical determination of phenolic compounds. Bioelectrochemistry, 2020, 132, 107418.	2.4	13
25	Alkaline Water and Longevity: A Murine Study. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-6.	0.5	12
26	Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: Involvement of the OprF porin. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2202-2210.	1.1	12
27	Biologically safe colloidal suspensions of naked iron oxide nanoparticles for in situ antibiotic suppression. Colloids and Surfaces B: Biointerfaces, 2019, 181, 102-111.	2.5	10
28	Sustainable production of high purity curcuminoids from Curcuma longa by magnetic nanoparticles: A case study in Brazil. Journal of Cleaner Production, 2017, 154, 233-241.	4.6	9
29	Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids, 2019, 51, 679-690.	1.2	9
30	Biotechnological applications of nanostructured hybrids of polyamine carbon quantum dots and iron oxide nanoparticles. Amino Acids, 2020, 52, 301-311.	1.2	9
31	Colloidal maghemite nanoparticles with oxyhydroxide-like interface and chiroptical properties. Applied Surface Science, 2020, 534, 147567.	3.1	9
32	Smart synthetic maghemite nanoparticles with unique surface properties encode binding specificity toward AsIII. Science of the Total Environment, 2020, 741, 140175.	3.9	8
33	Versatile nano-platform for tailored immuno-magnetic carriers. Analytical and Bioanalytical Chemistry, 2018, 410, 7575-7589.	1.9	7
34	Enzyme Immobilization on Maghemite Nanoparticles with Improved Catalytic Activity: An Electrochemical Study for Xanthine. Materials, 2020, 13, 1776.	1.3	6
35	Electrostatically stabilized hybrids of carbon and maghemite nanoparticles: electrochemical study and application. Physical Chemistry Chemical Physics, 2017, 19, 11668-11677.	1.3	5
36	Environmental implications of one-century COPRs evolution in a single industrial site: From leaching impact to sustainable remediation of CrVI polluted groundwater. Chemosphere, 2021, 283, 131211.	4.2	5

#	Article	IF	CITATIONS
37	H2O2Tolerance inPseudomonas Fluorescens: Synergy between Pyoverdineâ€ŀron(III) Complex and a Blue Extracellular Product Revealed by a Nanotechnologyâ€Based Electrochemical Approach. ChemElectroChem, 2019, 6, 5186-5190.	1.7	3
38	DNA Conductivity: Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles (Adv. Funct. Mater. 12/2015). Advanced Functional Materials, 2015, 25, 1821-1821.	7.8	0
39	H ₂ O ₂ Tolerance in <i>Pseudomonas Fluorescens</i>): Synergy between Pyoverdineâ€Iron(III) Complex and a Blue Extracellular Product Revealed by a Nanotechnologyâ€Based Electrochemical Approach. ChemElectroChem, 2019, 6, 5166-5166.	1.7	O