Bikaramjit Basu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1174978/bikaramjit-basu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

327 6,777 45 67 g-index

344 7,867 ext. papers ext. citations 5.3 avg, IF 6.58 L-index

#	Paper	IF	Citations
327	Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. <i>Acta Biomaterialia</i> , 2011 , 7, 3101-12	10.8	164
326	A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. <i>Ceramics International</i> , 2012 , 38, 341-349	5.1	156
325	Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. <i>Biomaterials</i> , 2018 , 150, 60-86	15.6	147
324	Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. <i>Materials Science and Engineering Reports</i> , 2016 , 103, 1-39	30.9	142
323	Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?. <i>Ceramics International</i> , 2009 , 35, 237-246	5.1	136
322	Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. <i>Nano Letters</i> , 2014 , 14, 1968-75	11.5	126
321	High Antibacterial Activity of Functionalized Chemically Exfoliated MoS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31567-31573	9.5	111
320	Understanding phase stability, microstructure development and biocompatibility in calcium phosphatelitania composites, synthesized from hydroxyapatite and titanium powder mix. <i>Materials Science and Engineering C</i> , 2009 , 29, 97-107	8.3	107
319	Simultaneous Exfoliation and Functionalization of 2H-MoS by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12634-12644	16.4	107
318	Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. <i>Biomaterials</i> , 2014 , 35, 6219-35	15.6	105
317	In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10NAgx(PO4)6(OH)2 (0.0ND.5) hydroxyapatites. <i>Materials Science and Engineering C</i> , 2011 , 31, 1320-13	329	98
316	Review on ultra-high temperature boride ceramics. <i>Progress in Materials Science</i> , 2020 , 111, 100651	42.2	96
315	Simulation of thermal and electric field evolution during spark plasma sintering. <i>Ceramics International</i> , 2009 , 35, 699-708	5.1	95
314	Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility. <i>Materials Science and Engineering C</i> , 2012 , 32, 1164-1173	8.3	85
313	Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 505-516	6	83
312	Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 79, 1050-1077	16.2	80
311	High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. <i>Materials Science and Engineering Reports</i> , 2018 , 131, 1-42	30.9	80

310	Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. <i>Materials Science and Engineering C</i> , 2017 , 70, 812-8	3 ⁸ 3	76
309	Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. <i>RSC Advances</i> , 2013 , 3, 11073	3.7	76
308	Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 1273-87	4.5	75
307	2011,		75
306	On the toughness enhancement in hydroxyapatite-based composites. <i>Acta Materialia</i> , 2013 , 61, 5198-5	28.54	70
305	Competent processing techniques for scaffolds in tissue engineering. <i>Biotechnology Advances</i> , 2017 , 35, 240-250	17.8	68
304	Densification, Sintering Reactions, and Properties of Titanium Diboride With Titanium Disilicide as a Sintering Aid. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3415-3423	3.8	67
303	Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 379, 234-239	5.3	67
302	Substrate conductivity dependent modulation of cell proliferation and differentiation in vitro. <i>Biomaterials</i> , 2013 , 34, 7073-85	15.6	64
301	In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. <i>RSC Advances</i> , 2014 , 4, 12763	3.7	63
300	Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. <i>Acta Biomaterialia</i> , 2016 , 31, 401-411	10.8	62
299	Nanoindentation response of novel hydroxyapatitefhullite composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 513-514, 197-201	5.3	62
298	The Foreign Body Response Demystified. ACS Biomaterials Science and Engineering, 2019, 5, 19-44	5.5	61
297	Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci. <i>Small</i> , 2015 , 11, 3183-93	11	61
296	Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 23015-28	9.5	60
295	Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2011 , 98, 18-29	3.5	60
294	Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1222-32	10.1	60
293	HDPE-Al2O3-HAp composites for biomedical applications: processing and characterizations. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88, 1-11	3.5	55

292	Phase stability and microstructure development in hydroxyapatitehullite system. <i>Scripta Materialia</i> , 2008 , 58, 1054-1057	5.6	54
291	Microstructure, mechanical and tribological properties of microwave sintered calcia-doped zirconia for biomedical applications. <i>Ceramics International</i> , 2008 , 34, 1509-1520	5.1	54
290	Surface-Functionalized Silk Fibroin Films as a Platform To Guide Neuron-like Differentiation of Human Mesenchymal Stem Cells. <i>ACS Applied Materials & Differentials</i> , 8, 22849-59	9.5	52
289	Development of WCIrO2 Nanocomposites by Spark Plasma Sintering. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 317-319	3.8	51
288	Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatitelluminum oxidellarbon nanotube composite. <i>Materials Science and Engineering C</i> , 2010 , 30, 1162-1169	8.3	50
287	Development of Nanocrystalline Wear-Resistant Y-TZP Ceramics. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 1771-1774	3.8	50
286	Electrically driven intracellular and extracellular nanomanipulators evoke neurogenic/cardiomyogenic differentiation in human mesenchymal stem cells. <i>Biomaterials</i> , 2016 , 77, 26-43	15.6	47
285	Sintering, microstructure, mechanical, and antimicrobial properties of HAp-ZnO biocomposites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010 , 95, 430-40	3.5	47
284	Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite. <i>Intermetallics</i> , 2005 , 13, 733-740	3.5	47
283	Achieving uniform microstructure and superior mechanical properties in ultrafine grained TiB2IIiSi2 composites using innovative multi stage spark plasma sintering. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 528, 200-207	5.3	45
282	Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. <i>Scripta Materialia</i> , 2010 , 62, 435-438	5.6	45
281	2011,		45
2 80	Friction and wear properties of novel HDPEHApAl2O3 biocomposites against alumina counterface. <i>Journal of Biomaterials Applications</i> , 2009 , 23, 407-33	2.9	43
279	Magnetic field assisted stem cell differentiation - role of substrate magnetization in osteogenesis. Journal of Materials Chemistry B, 2015 , 3, 3150-3168	7.3	42
278	Structural and Magnetic Phase Transformations of Hydroxyapatite-Magnetite Composites under Inert and Ambient Sintering Atmospheres. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6539-6555	3.8	42
277	Hydroxyapatite-titanium bulk composites for bone tissue engineering applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 791-806	5.4	42
276	Sintering, Phase Stability, and Properties of Calcium Phosphate-Mullite Composites. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1639	3.8	42
275	Spark Plasma-Sintered WCZrO2©o Nanocomposites with High Fracture Toughness and Strength. Journal of the American Ceramic Society, 2010 , 93, 1754	3.8	42

(2013-2012)

274	Moderate intensity static magnetic field has bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 1206-17	3.5	41	
273	Spark plasma sintering may lead to phase instability and inferior mechanical properties: A case study with TiB2. <i>Scripta Materialia</i> , 2013 , 69, 159-164	5.6	41	
272	Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. <i>Journal of Biomaterials Applications</i> , 2013 , 27, 967-78	2.9	41	
271	Microstructure and Properties of Spark Plasma-Sintered ZrO2🗹rB2 Nanoceramic Composites. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 2405-2412	3.8	41	
270	Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study. <i>Biomacromolecules</i> , 2014 , 15, 863-75	6.9	40	
269	Pulsed Electrical Stimulation and Surface Charge Induced Cell Growth on Multistage Spark Plasma Sintered Hydroxyapatite-Barium Titanate Piezobiocomposite. <i>Journal of the American Ceramic</i> <i>Society</i> , 2014 , 97, 481-489	3.8	40	
268	Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 256-64	3.5	40	
267	Electrochemical Behavior of TiCNNi-Based Cermets. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 205-210	3.8	40	
266	Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes. <i>Biomaterials</i> , 2013 , 34, 9252-63	15.6	38	
265	Densification and microstructure development in spark plasma sintered WCB wt% ZrO2 nanocomposites. <i>Journal of Materials Research</i> , 2007 , 22, 1491-1501	2.5	37	
264	Spark plasma sintering of novel ZrB2BiCIIiSi2 composites with better mechanical properties. <i>Materials Science & Materials Science & Materials Science & Microstructure and Processing</i> , 2012 , 534, 111-118	5.3	36	
263	Thermo-structural design of ZrB2BiC-based thermal protection system for hypersonic space vehicles. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1618-1633	3.8	35	
262	Development of ZrB2–SiC–Ti by multi stage spark plasma sintering at 1600°C. <i>Journal of the Ceramic Society of Japan</i> , 2016 , 124, 393-402	1	35	
261	Characterization of hydroxyapatite-perovskite (CaTiO3) composites: phase evaluation and cellular response. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2010 , 95, 320-9	3.5	35	
260	Erosion Wear Behavior of TiCNNi Cermets Containing Secondary Carbides (WC/NbC/TaC). <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3827-3831	3.8	35	
259	Early osseointegration of a strontium containing glass ceramic in a rabbit model. <i>Biomaterials</i> , 2013 , 34, 9278-86	15.6	34	
258	In vivo response of novel calcium phosphate-mullite composites: results up to 12 weeks of implantation. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2009 , 90, 547-57	3.5	34	
257	Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. <i>Biomaterials</i> , 2013 , 34, 4891-901	15.6	33	

256	(Fe/Sr) Codoped Biphasic Calcium Phosphate with Tailored Osteoblast Cell Functionality. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 857-871	5.5	32
255	Patterned growth and differentiation of neural cells on polymer derived carbon substrates with micro/nano structures in vitro. <i>Carbon</i> , 2013 , 65, 140-155	10.4	32
254	Microstructure-mechanical-tribological property correlation of multistage spark plasma sintered tetragonal ZrO2. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 3363-3375	6	32
253	Tribochemistry in sliding wear of TiCNNi-based cermets. <i>Journal of Materials Research</i> , 2008 , 23, 1214-1	2:2.₹	32
252	Pressureless sintering of ZrO2IrB2 composites: Microstructure and properties. <i>International Journal of Refractory Metals and Hard Materials</i> , 2007 , 25, 179-188	4.1	32
251	Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 865-875	7.3	31
250	Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice. <i>Biomacromolecules</i> , 2015 , 16, 636-49	6.9	30
249	Load-Dependent Transition in Sliding Wear Properties of TiCNIWCIN Cermets. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1534-1540	3.8	30
248	Synthesis and Morphological Analysis of Titanium Carbide Nanopowder. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2877-2882	3.8	29
247	Inhibition of grain growth during the final stage of multi-stage spark plasma sintering of oxide ceramics. <i>Scripta Materialia</i> , 2010 , 63, 585-588	5.6	29
246	Multifunctional Properties of Multistage Spark Plasma Sintered HA B aTiO3-Based Piezobiocomposites for Bone Replacement Applications. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 3753-3759	3.8	28
245	Thermal and electrical properties of TiB2MoSi2. <i>International Journal of Refractory Metals and Hard Materials</i> , 2010 , 28, 174-179	4.1	28
244	3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. <i>Biomaterials</i> , 2019 , 213, 119212	15.6	27
243	Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered hydroxyapatite-titanium biocomposites. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 2925-38	5.4	27
242	Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 869-82	4.5	27
241	Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 83, 191-208	5.4	27
240	Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. <i>RSC Advances</i> , 2016 , 6, 10837-10845	3.7	26
239	In vitro cytocompatibility assessment of amorphous carbon structures using neuroblastoma and Schwann cells. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 520-31	3.5	26

238	Spark Plasma Sintering of Nanocrystalline Cu and Cu-10 Wt Pct Pb Alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 2072-2084	2.3	26
237	Wear Mechanisms of TiB2 and TiB2IIiSi2 at Fretting Contacts with Steel and WCB wt% Co. <i>International Journal of Applied Ceramic Technology</i> , 2010 , 7, 89-103	2	26
236	Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites. <i>ACS Applied Materials & Design Composition (Composition of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites. ACS Applied Materials & Design Composition (Composition on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites). ACS Applied Materials & Design Composition (Composition on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites). ACS Applied Materials & Design Composition (Composition on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites). ACS Applied Materials & Design Composition (Composition on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites).</i>	9.5	26
235	Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering. <i>Journal of Biomaterials Applications</i> , 2016 , 30, 1168-81	2.9	25
234	In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA-Ti composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 223-36	3.5	25
233	Experimental and computational analysis of thermo-oxidative-structural stability of ZrB2BiCIIi during arc-jet testing. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 4860-4873	3.8	24
232	Spark Plasma Sintered HA-Fe3O4-Based Multifunctional Magnetic Biocomposites. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 2100-2108	3.8	24
231	Cryogenically cured hydroxyapatitegelatin nanobiocomposite for bovine serum albumin protein adsorption and release. <i>RSC Advances</i> , 2013 , 3, 14622	3.7	24
230	Microstructure Mechanical Properties Wear Resistance Relationship of SiAlON Ceramics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2319-233	2 ^{.3}	24
229	In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 1297-309	4.5	24
228	Oxidation Kinetics and Mechanisms of Hot-Pressed TiB2MoSi2 Composites. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3320-3327	3.8	23
227	Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells. <i>Bioelectrochemistry</i> , 2017 , 116, 52-64	5.6	22
226	Sliding Wear Properties of Self-Mated Yttria-Stabilized Tetragonal Zirconia Ceramics in Cryogenic Environment. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2525-2534	3.8	22
225	Fretting wear properties of hydroxyapatite, alumina containing high density polyethylene biocomposites against zirconia. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 85, 83-98	5.4	22
224	HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. <i>Journal of the Royal Society Interface</i> , 2019 , 16, 20180273	4.1	22
223	Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs. <i>ACS Applied Materials & Direction and Sustained Strontium Release in Direction Osteogenic Differentiation of hMSCs. ACS Applied Materials & Direction 2017</i> , 9, 19389-	19408	21
222	Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 103	4.5	20
221	Synergistic effect of static magnetic field and HA-Fe3O4 magnetic composites on viability of S. aureus and E. coli bacteria. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2014, 102, 524-32	3.5	20

220	Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications. <i>Rapid Prototyping Journal</i> , 2015 , 21, 716-724	3.8	19	
219	Low friction and severe wear of alumina in cryogenic environment: A first report. <i>Journal of Materials Research</i> , 2006 , 21, 832-843	2.5	19	
218	Zirconia toughened mica glass ceramics for dental restorations. <i>Dental Materials</i> , 2018 , 34, e36-e45	5.7	18	
217	Doped biphasic calcium phosphate: synthesis and structure. <i>Journal of Asian Ceramic Societies</i> , 2019 , 7, 265-283	2.4	18	
216	An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues. <i>Journal of the Indian Institute of Science</i> , 2019 , 99, 405-428	2.4	18	
215	Cytocompatibility property evaluation of gas pressure sintered SiAlONBiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. <i>Materials Science and Engineering C</i> , 2012 , 32, 464-469	8.3	18	
214	Fretting wear behaviour of hydroxyapatitellitanium composites in simulated body fluid, supplemented with 5 g la bovine serum albumin. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 404004	3	18	
213	In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 153	39 5 :49	18	
212	Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. <i>Biomaterials</i> , 2020 , 226, 119522	15.6	18	
211	Thermal inkjet 3D powder printing of metals and alloys: Current status and challenges. <i>Current Opinion in Biomedical Engineering</i> , 2017 , 2, 116-123	4.4	17	
210	Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli. <i>Bioelectrochemistry</i> , 2015 , 106, 276-89	5.6	17	
209	3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-Ray tomography analysis of compressive failure. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 29	4.5	17	
208	Better early osteogenesis of electroconductive hydroxyapatite-calcium titanate composites in a rabbit animal model. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 842-51	5.4	17	
207	Fretting wear study of Cullowt% TiB2 and Cullowt% TiB2llowt% Pb composites. <i>Wear</i> , 2013 , 306, 138-148	3.5	17	
206	In vitro biocompatibility of novel biphasic calcium phosphate-mullite composites. <i>Journal of Biomaterials Applications</i> , 2013 , 27, 497-509	2.9	17	
205	Is Glass Infiltration Beneficial to Improve Fretting Wear Properties for Alumina?. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 523-532	3.8	17	
204	Modulated in Vitro Biocompatibility of a Unique Cross-Linked Salicylic Acid-Poly(Exaprolactone)-Based Biodegradable Polymer. <i>ACS Applied Materials & Discourse (Examp; Interfaces)</i> 2016 , 8, 29721-29733	9.5	17	
203	On The Origin of Shear Stress Induced Myogenesis Using PMMA Based Lab-on-Chip. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1154-1171	5.5	16	

202	Shock wave-material interaction in ZrB2BiC based ultra high temperature ceramics for hypersonic applications. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 6925-6938	3.8	16	
201	Injection-molded high-density polyethyleneflydroxyapatitelluminum oxide hybrid composites for hard-tissue replacement: Mechanical, biological, and protein adsorption behavior. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 2133-2143	2.9	16	
200	Understanding Friction and Wear Mechanisms of High-Purity Titanium against Steel in Liquid Nitrogen Temperature. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 472-480	2.3	16	
199	Understanding Influence of MoSi2 Addition (5 Weight Percent) on Tribological Properties of TiB2. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 2998-301	3 .3	16	
198	Shifting of the absorption edge in TiB2/TiB(N)/Si3N4 solar selective coating for enhanced photothermal conversion. <i>Solar Energy</i> , 2018 , 173, 192-200	6.8	15	
197	Stiffness- and wettability-dependent myoblast cell compatibility of transparent poly(vinyl alcohol) hydrogels. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 346-54	3.5	15	
196	On the development of two characteristically different crystal morphology in SiO(2)-MgO-Al (2)O (3)-K (2)O-B (2)O (3)-F glass-ceramic system. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 51-66	4.5	15	
195	Fretting Wear Properties of TiCN-Ni Cermets: Influence of Load and Secondary Carbide Addition. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 539-550	2.3	15	
194	Microwave-Sintered MgO-Doped Zirconia with Improved Mechanical and Tribological Properties. <i>International Journal of Applied Ceramic Technology</i> , 2008 , 5, 49-62	2	15	
193	Unlubricated tribological performance of advanced ceramics and composites at fretting contacts with alumina. <i>Journal of Materials Research</i> , 2003 , 18, 1314-1324	2.5	15	
192	Inhibitory effect of direct electric field and HA-ZnO composites on S. aureus biofilm formation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016 , 104, 1064-75	3.5	15	
191	Dynamic compression behavior of reactive spark plasma sintered ultrafine grained (Hf, Zr)B2BiC composites. <i>Ceramics International</i> , 2015 , 41, 8468-8474	5.1	14	
190	Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2015 , 103, 1168-79	3.5	14	
189	Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes. <i>Carbon</i> , 2015 , 81, 193-202	10.4	14	
188	Twinning induced enhancement of fracture toughness in ultrafine grained Hydroxyapatite Calcium Titanate composites. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 805-815	6	14	
187	Temperature- and Angle-Dependent Emissivity and Thermal Shock Resistance of the W/WAIN/WAION/AI2O3-Based Spectrally Selective Absorber. <i>ACS Applied Energy Materials</i> , 2019 , 2, 555	5 7-5 56	7 ¹⁴	
186	Evaluation of physico-mechanical properties and in vitro biocompatibility of compression molded HDPE based biocomposites with HA/Al2O3 ceramic fillers and titanate coupling agents. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 3051-3063	2.9	14	
185	Pulsed electric field mediated in vitro cellular response of fibroblast and osteoblast-like cells on conducting austenitic stainless steel substrate. <i>Journal of Materials Science: Materials in Medicine</i> , 2013 24 1789-98	4.5	14	

184	Bacterial siderophore mimicking iron complexes as DNA targeting antimicrobials. <i>RSC Advances</i> , 2016 , 6, 39245-39260	3.7	14
183	In vitro osteogenic cell proliferation, mineralization, and in vivo osseointegration of injection molded high-density polyethylene-based hybrid composites in rabbit animal model. <i>Journal of Biomaterials Applications</i> , 2014 , 29, 142-57	2.9	13
182	Faster Biomineralization and Tailored Mechanical Properties of Marine-Resource-Derived Hydroxyapatite Scaffolds with Tunable Interconnected Porous Architecture <i>ACS Applied Bio Materials</i> , 2019 , 2, 2171-2184	4.1	12
181	Probing Ink-Powder Interactions during 3D Binder Jet Printing Using Time-Resolved X-ray Imaging. <i>ACS Applied Materials & Discrete Mate</i>	9.5	12
180	Dependence of Protein Adsorption on Wetting Behavior of UHMWPEHALI2O3LINT Hybrid Biocomposites. <i>Jom</i> , 2012 , 64, 506-513	2.1	12
179	On the densification mechanisms and properties of CuPb and CuPbIIiB2 nanocomposites densified using spark plasma sintering. <i>Scripta Materialia</i> , 2013 , 69, 122-126	5.6	12
178	Tribological Properties of a Hot-Pressed Ba-Doped S-Phase Sialon Ceramic. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1858-1865	3.8	12
177	Microstructure-hardness-fretting wear resistance correlation in ultrafine grained CulliB 2 P b composites. <i>Wear</i> , 2014 , 319, 160-171	3.5	11
176	Multiscale micro-patterned polymeric and carbon substrates derived from buckled photoresist films: fabrication and cytocompatibility. <i>Journal of Materials Science</i> , 2012 , 47, 3867-3875	4.3	11
175	Densification kinetics, phase assemblage and hardness of spark plasma sintered Cull 0 wt% TiB2 and Cull 0 wt% TiB2 10 wt% Pb composites. <i>Journal of Materials Research</i> , 2013 , 28, 1517-1528	2.5	11
174	Processing, tensile, and fracture properties of injection molded Hdpe-Al2O3-HAp hybrid composites. <i>Journal of Applied Polymer Science</i> , 2011 , 121, 2500-2511	2.9	11
173	Microfracture and Limited Tribochemical Wear of Silicon Carbide During High-Speed Sliding in Cryogenic Environment. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1764	3.8	11
172	Time constant determination for electrical equivalent of biological cells. <i>Journal of Applied Physics</i> , 2009 , 105, 084705	2.5	11
171	Influence of MoSi2 Addition on Load-Dependent Fretting Wear Properties of TiB2 Against Cemented Carbide. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2059-2066	3.8	11
170	Critical role of ZrO2 on densification and microstructure development in spark plasma sintered NbB2. <i>Acta Materialia</i> , 2018 , 152, 215-228	8.4	10
169	ZrO-toughened AlO composites with better fracture and wear resistance properties. <i>Journal of Biomaterials Applications</i> , 2018 , 32, 1174-1186	2.9	10
168	Cytotoxicity and genotoxicity property of hydroxyapatite-mullite eluates. <i>Journal of Biomedical Nanotechnology</i> , 2011 , 7, 74-5	4	10
167	Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. <i>Acta Biomaterialia</i> , 2021 , 129, 122-137	10.8	10

166	Periprosthetic biomechanical response towards dental implants, with functional gradation, for single/multiple dental loss. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019 , 94, 249-2	58 ^{4.1}	9
165	Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone. <i>Journal of Biomechanical Engineering</i> , 2018 , 140,	2.1	9
164	Controlled Shear Flow Directs Osteogenesis on UHMWPE-Based Hybrid Nanobiocomposites in a Custom-Designed PMMA Microfluidic Device <i>ACS Applied Bio Materials</i> , 2018 , 1, 414-435	4.1	9
163	Probing Cytocompatibility, Hemocompatibility, and Quantitative Inflammatory Response in toward Oxide Bioceramic Wear Particulates and a Comparison with CoCr. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 3194-3210	5.5	9
162	Microstructure Development, Nanomechanical, and Dynamic Compression Properties of Spark Plasma Sintered TiB2-Ti-Based Homogeneous and Bi-layered Composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2014 , 45, 4646-4664	2.3	9
161	Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2017 , 105, 2174-2190	3.5	9
160	Hot-pressed TiB2🗹 Owt.% TiSi2 ceramic with extremely good thermal transport properties at elevated temperatures (up to 1273K). <i>Scripta Materialia</i> , 2013 , 68, 79-82	5.6	9
159	Sliding wear properties of high purity copper in cryogenic environment. <i>Journal of Materials Science</i> , 2009 , 44, 2300-2309	4.3	9
158	Mechanical and Fretting Wear Behavior of Novel (W,Ti)CLO cermets. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 1639-1651	3.8	9
157	Evolution in friction and wear of MgBiCp composites: Influence of fretting duration. <i>Journal of Materials Research</i> , 2005 , 20, 801-812	2.5	9
156	Uniaxial Compaction-Based Manufacturing Strategy and 3D Microstructural Evaluation of Near-Net-Shaped ZrO2-Toughened Al2O3 Acetabular Socket . <i>Advanced Engineering Materials</i> , 2016 , 18, 1634-1644	3.5	9
155	Tissue-specific mesenchymal stem cell-dependent osteogenesis in highly porous chitosan-based bone analogs. <i>Stem Cells Translational Medicine</i> , 2021 , 10, 303-319	6.9	9
154	On the origin of spectrally selective high solar absorptance of TiB2-based tandem absorber with double layer antireflection coatings. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 220, 110839	6.4	9
153	ZrO-toughened AlO-based near-net shaped femoral head: Unique fabrication approach, 3D microstructure, burst strength and muscle cell response. <i>Materials Science and Engineering C</i> , 2017 , 77, 1216-1227	8.3	8
152	Computational and Microstructural Stability Analysis of Shock Wave Interaction with NbB-BC-Based Nanostructured Ceramics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 47491-47500	9.5	8
151	Probing the Influence of Esterilization on the Oxidation, Crystallization, Sliding Wear Resistance, and Cytocompatibility of Chemically Modified Graphene-Oxide-Reinforced HDPE/UHMWPE Nanocomposites and Wear Debris. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 1462-1475	5.5	8
150	Fine scale characterization of surface/subsurface and nanosized debris particles on worn Cull 0 % Pb nanocomposites. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	8
149	Biological cell-electrical field interaction: stochastic approach. <i>Journal of Biological Physics</i> , 2011 , 37, 39-50	1.6	8

148	Fundamentals of Hydroxyapatite and Related Calcium Phosphates 2010 , 19-52		8
147	Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. <i>Biomaterials</i> , 2019 , 209, 54-66	15.6	7
146	Perovskite Ceramics as New-Generation Materials for Orthopedic Applications. <i>Transactions of the Indian Institute of Metals</i> , 2019 , 72, 1999-2010	1.2	7
145	Spark Plasma Sintering of Ultrahigh Temperature Ceramics 2019 , 369-440		7
144	Phase stability of silver particles embedded calcium phosphate bioceramics. <i>Bulletin of Materials Science</i> , 2015 , 38, 525-529	1.7	7
143	Design of Supermacroporous Biomaterials via Gelation at Subzero Temperatures I Tryogelation 2010 , 499-531		7
142	The Micro Macroporous Biphasic Calcium Phosphate Concept for Bone Reconstruction and Tissue Engineering 2010 , 101-141		7
141	Analytical Computation of Electric Field for Onset of Electroporation. <i>Journal of Computational and Theoretical Nanoscience</i> , 2012 , 9, 137-143	0.3	7
140	Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. <i>ACS Applied Materials & Distinguishable Neuron-like and Glial-like Cells.</i> 13, 164-18	3 9 ·5	7
139	SiCNO Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 5571-5587	5.5	7
138	Epithelial cell functionality on electroconductive Fe/Sr co-doped biphasic calcium phosphate. <i>Journal of Biomaterials Applications</i> , 2019 , 33, 1035-1052	2.9	7
137	Experimental and computational analysis for thermo-erosive stability assessment of ZrB2-SiC based multiphase composites. <i>International Journal of Refractory Metals and Hard Materials</i> , 2019 , 84, 104972	4.1	6
136	Conductivity Studies of Silver-, Potassium-, and Magnesium-Doped Hydroxyapatite. <i>International Journal of Applied Ceramic Technology</i> , 2015 , 12, 319-328	2	6
135	Implementing statistical modeling approach towards development of ultrafine grained bioceramics: Case of ZrO2-toughened Al2O3. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 1333-	1343	6
134	Reprogramming the Stem Cell Behavior by Shear Stress and Electric Field Stimulation: Lab-on-a-Chip Based Biomicrofluidics in Regenerative Medicine. <i>Regenerative Engineering and Translational Medicine</i> , 2019 , 5, 99-127	2.4	6
133	Probing Local Mechanical Properties in Polymer-Ceramic Hybrid Acetabular Sockets Using Spherical Indentation Stress-Strain Protocols. <i>Integrating Materials and Manufacturing Innovation</i> , 2019 , 8, 257-27	·2·9	5
132	Spark Plasma Sintering of Nanoceramic Composites 2014 , 177-205		5
131	Biomaterials for Musculoskeletal Regeneration. <i>Indian Institute of Metals Series</i> , 2017 ,	0.3	5

(2018-2015)

130	Flow Cytometry Analysis of Cytotoxicity In Vitro and Long-Term Toxicity of HA-40 wt% BaTiO3 Nanoparticles In Vivo. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 3202-3211	3.8	5
129	Microstructure Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2014 , 45, 482-500	2.3	5
128	Cells of the Nervous System and Electrical Stimulation 2010 , 613-642		5
127	Evaluation of implant properties, safety profile and clinical efficacy of patient-specific acrylic prosthesis in cranioplasty using 3D binderjet printed cranium model: A pilot study. <i>Journal of Clinical Neuroscience</i> , 2021 , 85, 132-142	2.2	5
126	Epitaxial growth of 3CBiC on Si(111) and (001) by laser CVD. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 3850-3856	3.8	4
125	Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility. <i>Journal of Biomaterials Applications</i> , 2018 , 32, 1450-1463	2.9	4
124	Probing the influence of post-processing on microstructure and in situ compression failure with in silico modeling of 3D-printed scaffolds. <i>Journal of Materials Research</i> , 2018 , 33, 2062-2076	2.5	4
123	Gene expression in osteoblast cells treated with submicron to nanometer hydroxyapatite-mullite eluate particles. <i>Journal of Biomaterials Applications</i> , 2013 , 27, 891-908	2.9	4
122	Designing Nanofibrous Scaffolds for Tissue Engineering 2010 , 435-497		4
121	Injectable Hydrogels as Biomaterials 2010 , 179-203		4
121	Injectable Hydrogels as Biomaterials 2010 , 179-203 Fundamentals of Biomaterials and Biocompatibility 2010 , 1-18		4
120	Fundamentals of Biomaterials and Biocompatibility 2010 , 1-18	0.6	
120 119	Fundamentals of Biomaterials and Biocompatibility 2010 , 1-18 Nanomaterials for Improved Orthopedic and Bone Tissue Engineering Applications 2010 , 205-241 Processing and biological evaluation of porous HA/poly(methyl methacrylate) hybrid composite.	0.6	
120 119 118	Fundamentals of Biomaterials and Biocompatibility 2010 , 1-18 Nanomaterials for Improved Orthopedic and Bone Tissue Engineering Applications 2010 , 205-241 Processing and biological evaluation of porous HA/poly(methyl methacrylate) hybrid composite. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2010 , 2, 161-167 Impact of Bore-shell[mode of printing on properties of 3D binderjet printed zirconia-alumina based		
120 119 118	Fundamentals of Biomaterials and Biocompatibility 2010 , 1-18 Nanomaterials for Improved Orthopedic and Bone Tissue Engineering Applications 2010 , 205-241 Processing and biological evaluation of porous HA/poly(methyl methacrylate) hybrid composite. <i>International Journal of Advances in Engineering Sciences and Applied Mathematics</i> , 2010 , 2, 161-167 Impact of Bore-shellImode of printing on properties of 3D binderjet printed zirconia-alumina based bioceramics. <i>Open Ceramics</i> , 2020 , 3, 100026		4 4
120 119 118 117	Fundamentals of Biomaterials and Biocompatibility 2010, 1-18 Nanomaterials for Improved Orthopedic and Bone Tissue Engineering Applications 2010, 205-241 Processing and biological evaluation of porous HA/poly(methyl methacrylate) hybrid composite. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2010, 2, 161-167 Impact of Bore-shellImode of printing on properties of 3D binderjet printed zirconia-alumina based bioceramics. Open Ceramics, 2020, 3, 100026 2020,		4 4 4

112	Opportunities and challenges in processing and fabrication of ultra high temperature ceramics for hypersonic space vehicles: a case study with ZrB2BiC. <i>Advances in Applied Ceramics</i> , 2018 , 117, s2-s8	2.3	4
111	Biomaterials-based bioengineering strategies for bioelectronic medicine. <i>Materials Science and Engineering Reports</i> , 2021 , 146, 100630	30.9	4
110	Biomaterialomics: Data Science-driven Pathways to develop fourth-Generation Biomaterials <i>Acta Biomaterialia</i> , 2022 ,	10.8	4
109	Epitaxial growth of 3C-SiC (111) on Si via laser CVD carbonization. <i>Journal of Asian Ceramic Societies</i> , 2019 , 7, 312-320	2.4	3
108	Spark plasma sintered HA-ZnO ultrafine composite: Mechanical, bactericidal, and cytocompatibility properties. <i>International Journal of Applied Ceramic Technology</i> , 2018 , 15, 961-969	2	3
107	Structure P roperty Relationship in an Electroconductive Hydroxyapatite T itanium Disilicide Composite. <i>International Journal of Applied Ceramic Technology</i> , 2016 , 13, 773-786	2	3
106	Analysis of Electrical Analogue of a Biological Cell and Its Response to External Electric Field. Regenerative Engineering and Translational Medicine, 2019 , 5, 10-21	2.4	3
105	Titanium Diboride 2014 , 316-360		3
104	Orthopaedic biomaterials: current status and future perspective. <i>Materials Technology</i> , 2014 , 29, B2-B3	2.1	3
103	Novel HDPEquasicrystal composite fabricated for wear resistance. <i>Philosophical Magazine</i> , 2011 , 91, 2944-2953	1.6	3
102	UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2020 , 108, 2320-2343	3.5	2
101	Fundamentals of Scaffolds Fabrication Using Low Temperature Additive Manufacturing. <i>Indian Institute of Metals Series</i> , 2017 , 127-173	0.3	2
100	Corrosion and Degradation of Implantable Biomaterials. <i>Indian Institute of Metals Series</i> , 2017 , 253-289	0.3	2
99	Frictional Heating and Contact Temperature 2011 , 60-69		2
98	Materials for Orthopedic Applications 2010 , 53-100		2
97	Probing High-Temperature Electrochemical Corrosion of 316 Stainless Steel in Molten Nitrate Salt for Concentrated Solar Power Plants. <i>Journal of Materials Engineering and Performance</i> ,1	1.6	2
96	Functionalized Fluoropolymer-Compatibilized Elastomeric Bilayer Composites for Osteochondral Repair: Unraveling the Role of Substrate Stiffness and Functionalities <i>ACS Applied Bio Materials</i> , 2021 , 4, 8543-8558	4.1	2
95	Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder <i>Biomaterials</i> , 2021 , 281, 121331	15.6	2

(2021-2021)

94	Effect of Fe3+ substitution on the structural modification and band structure modulated UV absorption of hydroxyapatite. <i>International Journal of Applied Ceramic Technology</i> , 2021 , 18, 332-344	2	2
93	Dosimetry of pulsed magnetic field towards attaining bacteriostatic effect on Enterococcus faecalis: Implications for endodontic therapy. <i>International Endodontic Journal</i> , 2021 , 54, 1878-1891	5.4	2
92	Extrusion-based 3D printing of gelatin methacryloyl with nanocrystalline hydroxyapatite. <i>International Journal of Applied Ceramic Technology</i> ,	2	2
91	Probing Toxicity of Biomaterials and Biocompatibility Assessment. <i>Indian Institute of Metals Series</i> , 2017 , 291-351	0.3	1
90	HDPE-Quasicrystal Composite: Fabrication and Wear Resistance. <i>Transactions of the Indian Institute of Metals</i> , 2012 , 65, 13-20	1.2	1
89	Ceramics: Definition and Characteristics 2011 , 1-13		1
88	Toughness Optimization in Zirconia-Based Ceramics 2011 , 173-214		1
87	Overview: High-Temperature Ceramics 2011 , 257-285		1
86	Sintering of Ceramics 2011 , 76-104		1
85	Overview: Tribological Materials 2011 , 7-17		1
84	Overview: Mechanical Properties of Ceramics 2011 , 18-38		1
83	Perspective for Designing Materials for Tribological Applications 2011 , 503-508		1
82	Orthopedic Interface Tissue Engineering: Building the Bridge to Integrated Musculoskeletal Tissue Systems 2010 , 589-611		1
81	Science and Technology Integrated Titanium Dental Implant Systems 2010 , 143-177		1
80	Electric field mediated fibronectin-hydroxyapatite interaction: A molecular insight		1
79	Critical comparison of image analysis workflows for quantitative cell morphological evaluation in assessing cell response to biomaterials. <i>Biomedical Materials (Bristol)</i> , 2020 ,	3.5	1
78	Automated Image Processing Workflow for Morphological Analysis of Fluorescence Microscopy Cell Images. <i>Jom</i> , 2021 , 73, 2356	2.1	1
	Development of ZrB2-Based Single Layer Absorber Coating and Molten Salt Corrosion of Bulk		

76	Probing the spectrally selective property of NbB2-based tandem absorber coating for concentrated solar power application. <i>Journal of the American Ceramic Society</i> ,	3.8	1
75	Development and Validation of a Finite Element Model of Wear in UHMWPE Liner Using Experimental Data From Hip Simulator Studies. <i>Journal of Biomechanical Engineering</i> , 2022 , 144,	2.1	1
74	Strategies to Prevent Bacterial Adhesion on Biomaterials163-202		1
73	Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite <i>Journal of Biomaterials Applications</i> , 2022 , 8853282221085633	2.9	1
72	Six decades of UHMWPE in reconstructive surgery. International Materials Reviews,1-36	16.1	1
71	Microstructure and Properties of Spark Plasma-Sintered ZrO2@rB2 Nanoceramic Composites 2014 , 455	-462	O
70	Experimental approach to probe into mechanisms of high-temperature erosion of NbB2-ZrO2. Journal of the American Ceramic Society, 2021 , 104, 3518-3530	3.8	O
69	Urinary bladder and urethral tissue engineering, and 3D bioprinting approaches for urological reconstruction. <i>Journal of Materials Research</i> ,1	2.5	O
68	Towards Understanding the Oxide Evolution in Inconel 740H and Haynes 282 in Ambient Pressure Steam Oxidation. <i>Oxidation of Metals</i> ,1	1.6	O
67	Insights into In Situ Compatibilization of Polydimethylsiloxane-Modified Thermoplastic Polyurethanes by Dynamic Crosslinking: Relating Experiments to Predictive Models. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 3752-3769	4.3	O
66	Lightweight Nanostructured Materials and Their Certification for Wind Energy Applications 2017 , 323-3	352	
65	Mechanical Properties of Ceramics 2020 , 71-101		
64	Sliding Wear of Zirconia-Toughened Alumina 2020 , 215-226		
63	Thermo-Erosive Behavior of ZrB2-SiC Composites 2020 , 265-277		
62	Microengineered Polymer- and Ceramic-Based Biomaterial Scaffolds: A Topical Review on Design, Processing, and Biocompatibility Properties 2013 , 80-118		
61	Case Study: Hydroxyapatite I Iitanium Bulk Composites for Bone Tissue Engineering Applications. <i>Indian Institute of Metals Series</i> , 2017 , 15-44	0.3	
60	Environment and Engineering of Ceramic Materials 2011 , 121-136		
59	Thermal Spraying of Ceramics 2011 , 137-159		

(2011-2011)

Processing and Properties of TiB2 and ZrB2 with Sinter-Additives 2011, 286-304 58 S-Phase SiAlON Ceramics: Microstructure and Properties 2011, 215-233 57 Toughness and Tribological Properties of MAX Phases 2011, 234-255 56 Oxide Nanoceramic Composites 2011, 347-365 55 Calcium Phosphate-Based Bioceramic Composites 2011, 422-447 54 Bonding, Structure, and Physical Properties 2011, 14-33 53 Mechanical behavior of Ceramics 2011, 34-64 52 Synthesis of High-Purity Ceramic Powders 2011, 65-75 51 Thermomechanical Sintering Methods 2011, 105-119 50 Lubrication 2011, 101-109 49 Case Study: Max Phase Ti3Sic2 2011, 185-196 48 Overview: Nanoceramic Composites 2011, 305-324 47 46 Overview: Cryogenic Wear Properties of Materials 2011, 421-438 Overview: Bioceramics and Biocomposites 2011, 211-232 45 Overview: Lightweight Metal Matrix Composites and Cermets 2011, 351-361 44 Case Study: Transformation-Toughened Zirconia 2011, 142-166 43 Case Study: Sialon Ceramics 2011, 167-184 42 Case Study: Titanium Diboride Ceramics and Composites 2011, 197-210 41

Case Study: Polymer-Ceramic Biocomposites 2011, 233-250 40 Tribological Properties of Ceramic Biocomposites 2011, 287-303 39 38 Case Study: Nanocrystalline Yttria-Stabilized Tetragonal Zirconia Polycrystalline Ceramics 2011, 325-337 Case Study: Nanostructured Tungsten Carbidellirconia Nanocomposites 2011, 338-350 37 Case Study: MagnesiumBilicon Carbide Particulate-Reinforced Composites 2011, 362-376 36 Case Study: Titanium Carbonitride Nickel-Based Cermets 2011, 377-406 35 Case Study: (W,Ti)Clo Cermets 2011, 407-419 34 Case Study: Sliding Wear of Alumina in a Cryogenic Environment 2011, 439-453 33 Case Study: Sliding Wear of Self-Mated Tetragonal Zirconia Ceramics in Liquid Nitrogen 2011, 454-468 32 31 Case Study: Sliding Wear of Silicon Carbide in a Cryogenic Environment 2011, 469-484 Friction and Wear of Oxide Ceramics in an Aqueous Environment 2011, 485-501 30 Surfaces and Contacts 2011, 39-48 29 28 Overview: Structural Ceramics 2011, 111-141 Medical Devices Based on Bioinspired Ceramics 2010, 357-409 27 Ionomer Glasses: Design and Characterization 2010, 411-433 26 Introduction to Processing of Biomaterials 2010, 243-276 Cell-Based Nanocomposites and Biomolecules for Bone Tissue Engineering 2010, 551-588 24 Titanium Nitride and Diamond Like Carbon Coatings for Cardiovascular Applications 2010, 677-705 23

22	Supported Cell Mimetic Monolayers and their Blood Compatibility 2010 , 663-676
21	Placental Umbilical Cord Blood: A True Blood Substitute 2010 , 643-662
20	Laser Processing of Orthopedic Biomaterials 2010 , 277-322
19	Functionally Graded All Ceramic HIP Joint 2010 , 323-356
18	Biomaterial Applications 2010 , 533-550
17	Microstructure Development and Properties of Non-Oxide Ceramic Nanocomposites 2011 , 366-390
16	Coatings and Protection of Structural Ceramics 2011 , 160-172
15	Overview: Relevance, Characteristics, and Applications of Nanostructured Ceramics 2011 , 321-346
14	Tribological Properties of Ceramic Biocomposites 2011 , 448-471
13	Overview: Introduction to Biomaterials 2011 , 391-421
12	High-Temperature Mechanical and Oxidation Properties 2011 , 305-320
11	Impedance Spectroscopy and Structural Studies on Silver Doped Hydroxyapatite. <i>Materials</i> Research Society Symposia Proceedings, 2009 , 1239, 1
10	Case Study: Glass-Infiltrated Alumina 2011 , 276-286
9	Case Study: Natural Tooth and Dental Restorative Materials 2011 , 251-275
8	Wear Mechanisms 2011 , 70-100
7	Load dependent fretting wear properties of 3Y-TZP nanoceramics. <i>Transactions of the Indian</i> Institute of Metals, 2008 , 61, 145-149
6	Ceramics for Armor Applications 2020 , 245-260
5	Three Dimensional Porous Scaffolds: Mechanical and Biocompatibility Properties. <i>Indian Institute of Metals Series</i> , 2017 , 353-384

Case Study: Development of Acetabular Socket Prototype. *Indian Institute of Metals Series*, **2017**, 151-176.3

3	Case Study: Osseointegration of Strontium Containing Glass Ceramic. <i>Indian Institute of Metals Series</i> , 2017 , 73-98	0.3
2	Processing, Tensile and Fracture Properties of Injection Molded HDPEAl2O3HAp Hybrid Composites. <i>Indian Institute of Metals Series</i> , 2017 , 125-150	0.3
1	A Way Forward. <i>Indian Institute of Metals Series</i> , 2017 , 247-257	0.3