
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174978/publications.pdf Version: 2024-02-01

RIKADAMIT RASIL

#	Article	IF	CITATIONS
1	Review on ultra-high temperature boride ceramics. Progress in Materials Science, 2020, 111, 100651.	16.0	259
2	Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials, 2018, 150, 60-86.	5.7	246
3	A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International, 2012, 38, 341-349.	2.3	189
4	Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?. Ceramics International, 2009, 35, 237-246.	2.3	181
5	Simultaneous Exfoliation and Functionalization of 2H-MoS ₂ by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity. Journal of the American Chemical Society, 2018, 140, 12634-12644.	6.6	176
6	Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering Reports, 2016, 103, 1-39.	14.8	175
7	High Antibacterial Activity of Functionalized Chemically Exfoliated MoS ₂ . ACS Applied Materials & amp; Interfaces, 2016, 8, 31567-31573.	4.0	161
8	Conformal Cytocompatible Ferrite Coatings Facilitate the Realization of a Nanovoyager in Human Blood. Nano Letters, 2014, 14, 1968-1975.	4.5	146
9	Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials, 2014, 35, 6219-6235.	5.7	133
10	Understanding phase stability, microstructure development and biocompatibility in calcium phosphate–titania composites, synthesized from hydroxyapatite and titanium powder mix. Materials Science and Engineering C, 2009, 29, 97-107.	3.8	127
11	High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Materials Science and Engineering Reports, 2018, 131, 1-42.	14.8	126
12	Simulation of thermal and electric field evolution during spark plasma sintering. Ceramics International, 2009, 35, 699-708.	2.3	118
13	The Foreign Body Response Demystified. ACS Biomaterials Science and Engineering, 2019, 5, 19-44.	2.6	113
14	In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10â^'xAgx(PO4)6(OH)2 (0.0â‰ ¤ â‰ 0 .5) hydroxyapatites. Materials Science and Engineering C, 2011, 31, 1320-1329.	3.8	111
15	Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility. Materials Science and Engineering C, 2012, 32, 1164-1173.	3.8	108
16	Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renewable and Sustainable Energy Reviews, 2017, 79, 1050-1077.	8.2	106
17	Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Materials Science and Engineering C, 2017, 70, 812-823.	3.8	103
18	Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics. Journal of the European Ceramic Society, 2009, 29, 505-516.	2.8	96

#	Article	IF	CITATIONS
19	Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Advances, 2013, 3, 11073.	1.7	93
20	Competent processing techniques for scaffolds in tissue engineering. Biotechnology Advances, 2017, 35, 240-250.	6.0	89
21	In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Advances, 2014, 4, 12763.	1.7	87
22	Densification, phase stability and inÂvitro biocompatibility property of hydroxyapatite-10Âwt% silver composites. Journal of Materials Science: Materials in Medicine, 2010, 21, 1273-1287.	1.7	84
23	On the toughness enhancement in hydroxyapatite-based composites. Acta Materialia, 2013, 61, 5198-5215.	3.8	82
24	Densification, Sintering Reactions, and Properties of Titanium Diboride With Titanium Disilicide as a Sintering Aid. Journal of the American Ceramic Society, 2007, 90, 3415-3423.	1.9	81
25	Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1222-1232.	3.9	81
26	Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomaterialia, 2016, 31, 401-411.	4.1	79
27	Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 379, 234-239.	2.6	78
28	Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. ACS Applied Materials & Interfaces, 2015, 7, 23015-23028.	4.0	78
29	Substrate conductivity dependent modulation of cell proliferation and differentiation inÂvitro. Biomaterials, 2013, 34, 7073-7085.	5.7	77
30	Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 18-29.	1.6	73
31	Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gramâ€Positive Staphylococci. Small, 2015, 11, 3183-3193.	5.2	72
32	Nanoindentation response of novel hydroxyapatite–mullite composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 197-201.	2.6	69
33	Surface-Functionalized Silk Fibroin Films as a Platform To Guide Neuron-like Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2016, 8, 22849-22859.	4.0	64
34	Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite–aluminum oxide–carbon nanotube composite. Materials Science and Engineering C, 2010, 30, 1162-1169.	3.8	62
35	HDPEâ€Al ₂ O ₃ â€HAp composites for biomedical applications: Processing and characterizations. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 1-11.	1.6	61
36	Electrically driven intracellular and extracellular nanomanipulators evoke neurogenic/cardiomyogenic differentiation in human mesenchymal stem cells. Biomaterials, 2016, 77, 26-43.	5.7	60

#	Article	IF	CITATIONS
37	Development of WC-ZrO2Nanocomposites by Spark Plasma Sintering. Journal of the American Ceramic Society, 2004, 87, 317-319.	1.9	59
38	Microstructure, mechanical and tribological properties of microwave sintered calcia-doped zirconia for biomedical applications. Ceramics International, 2008, 34, 1509-1520.	2.3	58
39	Phase stability and microstructure development in hydroxyapatite–mullite system. Scripta Materialia, 2008, 58, 1054-1057.	2.6	58
40	Magnetic field assisted stem cell differentiation – role of substrate magnetization in osteogenesis. Journal of Materials Chemistry B, 2015, 3, 3150-3168.	2.9	58
41	Hydroxyapatiteâ€ŧitanium bulk composites for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 791-806.	2.1	58
42	Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite. Intermetallics, 2005, 13, 733-740.	1.8	56
43	Moderate intensity static magnetic field has bactericidal effect on <i>E. coli</i> and <i>S. epidermidis</i> on sintered hydroxyapatite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1206-1217.	1.6	54
44	Microstructure and Properties of Spark Plasma-Sintered ZrO2–ZrB2 Nanoceramic Composites. Journal of the American Ceramic Society, 2006, 89, 2405-2412.	1.9	53
45	Sintering, microstructure, mechanical, and antimicrobial properties of HApâ€ZnO biocomposites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 430-440.	1.6	53
46	Development of Nanocrystalline Wearâ€Resistant Yâ€TZP Ceramics. Journal of the American Ceramic Society, 2004, 87, 1771-1774.	1.9	52
47	Cellular proliferation, cellular viability, and biocompatibility of HAâ€ZnO composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 256-264.	1.6	52
48	Spark Plasma‧intered WC–ZrO ₂ –Co Nanocomposites with High Fracture Toughness and Strength. Journal of the American Ceramic Society, 2010, 93, 1754-1763.	1.9	51
49	Cross-Linked, Biodegradable, Cytocompatible Salicylic Acid Based Polyesters for Localized, Sustained Delivery of Salicylic Acid: An In Vitro Study. Biomacromolecules, 2014, 15, 863-875.	2.6	51
50	Friction and Wear Properties of Novel HDPE—HAp—Al ₂ O ₃ Biocomposites against Alumina Counterface. Journal of Biomaterials Applications, 2009, 23, 407-433.	1.2	50
51	Sintering, Phase Stability, and Properties of Calcium Phosphateâ€Mullite Composites. Journal of the American Ceramic Society, 2010, 93, 1639-1649.	1.9	49
52	Achieving uniform microstructure and superior mechanical properties in ultrafine grained TiB2–TiSi2 composites using innovative multi stage spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 200-207.	2.6	48
53	Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. Journal of Biomaterials Applications, 2013, 27, 967-978.	1.2	48
54	Pulsed Electrical Stimulation and Surface Charge Induced Cell Growth on Multistage Spark Plasma Sintered Hydroxyapatiteâ€Barium Titanate Piezobiocomposite. Journal of the American Ceramic Society, 2014, 97, 481-489.	1.9	48

#	Article	IF	CITATIONS
55	Structural and Magnetic Phase Transformations of Hydroxyapatite-Magnetite Composites under Inert and Ambient Sintering Atmospheres. Journal of Physical Chemistry C, 2015, 119, 6539-6555.	1.5	48
56	Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. Scripta Materialia, 2010, 62, 435-438.	2.6	47
57	Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes. Biomaterials, 2013, 34, 9252-9263.	5.7	46
58	Thermoâ€structural design of ZrB ₂ –SiCâ€based thermal protection system for hypersonic space vehicles. Journal of the American Ceramic Society, 2017, 100, 1618-1633.	1.9	46
59	(Fe/Sr) Codoped Biphasic Calcium Phosphate with Tailored Osteoblast Cell Functionality. ACS Biomaterials Science and Engineering, 2018, 4, 857-871.	2.6	45
60	3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Biomaterials, 2019, 213, 119212.	5.7	45
61	Electrochemical Behavior of TiCN?Ni-Based Cermets. Journal of the American Ceramic Society, 2007, 90, 205-210.	1.9	43
62	Characterization of hydroxyapatiteâ€perovskite (CaTiO ₃) composites: Phase evaluation and cellular response. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 320-329.	1.6	43
63	Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 111-118.	2.6	43
64	Spark plasma sintering may lead to phase instability and inferior mechanical properties: A case study with TiB2. Scripta Materialia, 2013, 69, 159-164.	2.6	43
65	An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues. Journal of the Indian Institute of Science, 2019, 99, 405-428.	0.9	43
66	Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites. Journal of Materials Research, 2007, 22, 1491-1501.	1.2	42
67	Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomaterialia, 2022, 143, 1-25.	4.1	42
68	Pressureless sintering of ZrO2–ZrB2 composites: Microstructure and properties. International Journal of Refractory Metals and Hard Materials, 2007, 25, 179-188.	1.7	41
69	Erosion Wear Behavior of TiCN?Ni Cermets Containing Secondary Carbides (WC/NbC/TaC). Journal of the American Ceramic Society, 2006, 89, 3827-3831.	1.9	40
70	Patterned growth and differentiation of neural cells on polymer derived carbon substrates with micro/nano structures in vitro. Carbon, 2013, 65, 140-155.	5.4	40
71	Microstructure-mechanical-tribological property correlation of multistage spark plasma sintered tetragonal ZrO2. Journal of the European Ceramic Society, 2010, 30, 3363-3375.	2.8	39
72	Development of ZrB ₂ –SiC–Ti by multi stage spark plasma sintering at 1600°C. Journal of the Ceramic Society of Japan, 2016, 124, 393-402.	0.5	39

#	Article	IF	CITATIONS
73	Long-Term Sustained Release of Salicylic Acid from Cross-Linked Biodegradable Polyester Induces a Reduced Foreign Body Response in Mice. Biomacromolecules, 2015, 16, 636-649.	2.6	38
74	Thermal and electrical properties of TiB2–MoSi2. International Journal of Refractory Metals and Hard Materials, 2010, 28, 174-179.	1.7	37
75	Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. Biomaterials, 2013, 34, 4891-4901.	5.7	37
76	Doped biphasic calcium phosphate: synthesis and structure. Journal of Asian Ceramic Societies, 2019, 7, 265-283.	1.0	37
77	<i>In vivo</i> response of novel calcium phosphateâ€mullite composites: Results up to 12 weeks of implantation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 547-557.	1.6	36
78	Early osseointegration of a strontium containing glass ceramic inÂaÂrabbit model. Biomaterials, 2013, 34, 9278-9286.	5.7	36
79	Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. Journal of Materials Chemistry B, 2013, 1, 865-875.	2.9	36
80	Tribochemistry in sliding wear of TiCN–Ni-based cermets. Journal of Materials Research, 2008, 23, 1214-1227.	1.2	35
81	Multifunctional Properties of Multistage Spark Plasma Sintered <scp>HA</scp> – <scp><scp>BaTiO</scp></scp> ₃ â€Based Piezobiocomposites for Bone Replacement Applications. Journal of the American Ceramic Society, 2013, 96, 3753-3759.	1.9	34
82	HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. Journal of the Royal Society Interface, 2019, 16, 20180273.	1.5	34
83	Load-Dependent Transition in Sliding Wear Properties of TiCN?WC?Ni Cermets. Journal of the American Ceramic Society, 2007, 90, 1534-1540.	1.9	33
84	Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content. Journal of Materials Science: Materials in Medicine, 2009, 20, 869-882.	1.7	32
85	<i>In vitro</i> cytocompatibility assessment of amorphous carbon structures using neuroblastoma and Schwann cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 520-531.	1.6	32
86	Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials, 2020, 226, 119522.	5.7	32
87	Probing Ink–Powder Interactions during 3D Binder Jet Printing Using Time-Resolved X-ray Imaging. ACS Applied Materials & Interfaces, 2020, 12, 34254-34264.	4.0	32
88	Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered hydroxyapatite–titanium biocomposites. Journal of Biomedical Materials Research - Part A, 2013, 101, 2925-2938.	2.1	31
89	Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs. ACS Applied Materials & Interfaces, 2017, 9, 19389-19408.	4.0	31
90	Shock waveâ€material interaction in ZrB ₂ –SiC based ultra high temperature ceramics for hypersonic applications. Journal of the American Ceramic Society, 2019, 102, 6925-6938.	1.9	31

#	Article	IF	CITATIONS
91	Synthesis and Morphological Analysis of Titanium Carbide Nanopowder. Journal of the American Ceramic Society, 2009, 92, 2877-2882.	1.9	30
92	Inhibition of grain growth during the final stage of multi-stage spark plasma sintering of oxide ceramics. Scripta Materialia, 2010, 63, 585-588.	2.6	30
93	Cryogenically cured hydroxyapatite–gelatin nanobiocomposite for bovine serum albumin protein adsorption and release. RSC Advances, 2013, 3, 14622.	1.7	30
94	Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 11954-11968.	4.0	30
95	Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells. Bioelectrochemistry, 2017, 116, 52-64.	2.4	30
96	Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition. Journal of Biomedical Materials Research - Part A, 2007, 83A, 191-208.	2.1	29
97	Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment. Journal of Materials Science: Materials in Medicine, 2015, 26, 103.	1.7	29
98	Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. RSC Advances, 2016, 6, 10837-10845.	1.7	29
99	Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering. Journal of Biomaterials Applications, 2016, 30, 1168-1181.	1.2	29
100	Temperature- and Angle-Dependent Emissivity and Thermal Shock Resistance of the W/WAIN/WAION/Al ₂ O ₃ -Based Spectrally Selective Absorber. ACS Applied Energy Materials, 2019, 2, 5557-5567.	2.5	29
101	Spark Plasma Sintering of Nanocrystalline Cu and Cu-10ÂWtÂPct Pb Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2072-2084.	1.1	28
102	<i>In vitro</i> bioactivity and cytocompatibility properties of spark plasma sintered HAâ€Ti composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 223-236.	1.6	28
103	Zirconia toughened mica glass ceramics for dental restorations. Dental Materials, 2018, 34, e36-e45.	1.6	28
104	Oxidation Kinetics and Mechanisms of Hotâ€Pressed TiB ₂ –MoSi ₂ Composites. Journal of the American Ceramic Society, 2008, 91, 3320-3327.	1.9	27
105	In vitro cellular adhesion and antimicrobial property of SiO2–MgO–Al2O3–K2O–B2O3–F glass ceramic. Journal of Materials Science: Materials in Medicine, 2010, 21, 1297-1309.	1.7	27
106	Microstructure–Mechanical Properties–Wear Resistance Relationship of SiAlON Ceramics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2319-2332.	1.1	26
107	Wear Mechanisms of TiB ₂ and TiB ₂ –TiSi ₂ at Fretting Contacts with Steel and WC–6 wt% Co. International Journal of Applied Ceramic Technology, 2010, 7, 89-103.	1.1	26
108	Experimental and computational analysis of thermoâ€oxidativeâ€structural stability of ZrB ₂ –SiC–Ti during arcâ€jet testing. Journal of the American Ceramic Society, 2017, 100, 4860-4873.	1.9	26

#	Article	IF	CITATIONS
109	Sliding Wear Properties of Self-Mated Yttria-Stabilized Tetragonal Zirconia Ceramics in Cryogenic Environment. Journal of the American Ceramic Society, 2007, 90, 2525-2534.	1.9	25
110	Spark Plasma Sintered <scp>HA</scp> â€ <scp><scp>Fe</scp></scp> ₃ <scp><scp>O</scp></scp> ₄ â€Based Multifunctional Magnetic Biocomposites. Journal of the American Ceramic Society, 2013, 96, 2100-2108.	1.9	25
111	Fretting wear properties of hydroxyapatite, alumina containing high density polyethylene biocomposites against zirconia. Journal of Biomedical Materials Research - Part A, 2008, 85A, 83-98.	2.1	24
112	Synergistic effect of static magnetic field and HAâ€Fe ₃ O ₄ magnetic composites on viability of <i>S. aureus</i> and <i>E. coli</i> bacteria. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 524-532.	1.6	23
113	Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications. Rapid Prototyping Journal, 2015, 21, 716-724.	1.6	23
114	Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli. Bioelectrochemistry, 2015, 106, 276-289.	2.4	23
115	Faster Biomineralization and Tailored Mechanical Properties of Marine-Resource-Derived Hydroxyapatite Scaffolds with Tunable Interconnected Porous Architecture. ACS Applied Bio Materials, 2019, 2, 2171-2184.	2.3	23
116	Low friction and severe wear of alumina in cryogenic environment: A first report. Journal of Materials Research, 2006, 21, 832-843.	1.2	22
117	Understanding Influence of MoSi2 Addition (5 Weight Percent) on Tribological Properties of TiB2. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2998-3013.	1.1	22
118	Modulated in Vitro Biocompatibility of a Unique Cross-Linked Salicylic Acid–Poly(ε-caprolactone)-Based Biodegradable Polymer. ACS Applied Materials & Interfaces, 2016, 8, 29721-29733.	4.0	22
119	Shifting of the absorption edge in TiB2/TiB(N)/Si3N4 solar selective coating for enhanced photothermal conversion. Solar Energy, 2018, 173, 192-200.	2.9	22
120	Understanding Friction and Wear Mechanisms of High-Purity Titanium against Steel in Liquid Nitrogen Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 472-480.	1.1	21
121	Fretting wear behaviour of hydroxyapatite–titanium composites in simulated body fluid, supplemented with 5 g l ^{â^'1} bovine serum albumin. Journal Physics D: Applied Physics, 2013, 46, 404004.	1.3	21
122	<i>In vitro</i> cytotoxicity and <i>in vivo</i> osseointergration properties of compressionâ€molded HDPEâ€HAâ€Al ₂ O ₃ hybrid biocomposites. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1539-1549.	2.1	21
123	Better early osteogenesis of electroconductive hydroxyapatite–calcium titanate composites in a rabbit animal model. Journal of Biomedical Materials Research - Part A, 2014, 102, 842-851.	2.1	21
124	Microfracture and Limited Tribochemical Wear of Silicon Carbide During High‧peed Sliding in Cryogenic Environment. Journal of the American Ceramic Society, 2010, 93, 1764-1773.	1.9	20
125	Thermal inkjet 3D powder printing of metals and alloys: Current status and challenges. Current Opinion in Biomedical Engineering, 2017, 2, 116-123.	1.8	20
126	3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-Ray tomography analysis of compressive failure. Journal of Materials Science: Materials in Medicine, 2018, 29, 29.	1.7	20

#	Article	IF	CITATIONS
127	Periprosthetic biomechanical response towards dental implants, with functional gradation, for single/multiple dental loss. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 249-258.	1.5	20
128	Bacterial siderophore mimicking iron complexes as DNA targeting antimicrobials. RSC Advances, 2016, 6, 39245-39260.	1.7	19
129	On The Origin of Shear Stress Induced Myogenesis Using PMMA Based Lab-on-Chip. ACS Biomaterials Science and Engineering, 2017, 3, 1154-1171.	2.6	19
130	Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone. Journal of Biomechanical Engineering, 2018, 140, .	0.6	19
131	Computational and Microstructural Stability Analysis of Shock Wave Interaction with NbB ₂ -B ₄ C-Based Nanostructured Ceramics. ACS Applied Materials & Interfaces, 2019, 11, 47491-47500.	4.0	19
132	Tissue-specific mesenchymal stem cell-dependent osteogenesis in highly porous chitosan-based bone analogs. Stem Cells Translational Medicine, 2021, 10, 303-319.	1.6	19
133	Is Glass Infiltration Beneficial to Improve Fretting Wear Properties for Alumina?. Journal of the American Ceramic Society, 2007, 90, 523-532.	1.9	18
134	Microwave‧intered MgOâ€Đoped Zirconia with Improved Mechanical and Tribological Properties. International Journal of Applied Ceramic Technology, 2008, 5, 49-62.	1.1	18
135	Cytocompatibility property evaluation of gas pressure sintered SiAlON–SiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. Materials Science and Engineering C, 2012, 32, 464-469.	3.8	18
136	Fretting wear study of Cu–10wt% TiB2 and Cu–10wt% TiB2–10wt% Pb composites. Wear, 2013, 306, 138-148.	1.5	18
137	<i>InÂvitro</i> biocompatibility of novel biphasic calcium phosphate-mullite composites. Journal of Biomaterials Applications, 2013, 27, 497-509.	1.2	18
138	Dynamic compression behavior of reactive spark plasma sintered ultrafine grained (Hf, Zr)B2–SiC composites. Ceramics International, 2015, 41, 8468-8474.	2.3	18
139	Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and Engineering Reports, 2021, 146, 100630.	14.8	18
140	On the development of two characteristically different crystal morphology in SiO2–MgO–Al2O3–K2O–B2O3–F glass-ceramic system. Journal of Materials Science: Materials in Medicine, 2009, 20, 51-66.	1.7	17
141	Injectionâ€molded highâ€density polyethylene–hydroxyapatite–aluminum oxide hybrid composites for hardâ€tissue replacement: Mechanical, biological, and protein adsorption behavior. Journal of Applied Polymer Science, 2012, 124, 2133-2143.	1.3	17
142	Biocompatibility property of 100% strontiumâ€substituted SiO ₂ –Al ₂ O ₃ –P ₂ O ₅ –CaO–CaF _{2< glass ceramics over 26 weeks implantation in rabbit model: Histology and microâ€Computed Tomography analysis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1168-1179.}	/sub> 1.6	17
143	Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes. Carbon, 2015, 81, 193-202.	5.4	17
144	Evaluation of implant properties, safety profile and clinical efficacy of patient-specific acrylic prosthesis in cranioplasty using 3D binderjet printed cranium model: A pilot study. Journal of Clinical Neuroscience, 2021, 85, 132-142.	0.8	17

#	Article	IF	CITATIONS
145	Fretting Wear Properties of TiCN-Ni Cermets: Influence of Load and Secondary Carbide Addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 539-550.	1.1	16
146	Inhibitory effect of direct electric field and <scp>HA</scp> â€ <scp>Z</scp> n <scp>O</scp> composites on <scp><i>S</i></scp> <i>. aureus</i> biofilm formation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1064-1075.	1.6	16
147	Twinning induced enhancement of fracture toughness in ultrafine grained Hydroxyapatite–Calcium Titanate composites. Journal of the European Ceramic Society, 2016, 36, 805-815.	2.8	16
148	Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. Acta Biomaterialia, 2021, 129, 122-137.	4.1	16
149	Unlubricated tribological performance of advanced ceramics and composites at fretting contacts with alumina. Journal of Materials Research, 2003, 18, 1314-1324.	1.2	15
150	Time constant determination for electrical equivalent of biological cells. Journal of Applied Physics, 2009, 105, .	1.1	15
151	Evaluation of physicoâ€mechanical properties and <i>in vitro</i> biocompatibility of compression molded HDPE based biocomposites with HA/Al ₂ O ₃ ceramic fillers and titanate coupling agents. Journal of Applied Polymer Science, 2012, 124, 3051-3063.	1.3	15
152	Stiffness―and wettabilityâ€dependent myoblast cell compatibility of transparent poly(vinyl alcohol) hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 346-354.	1.6	15
153	Critical role of ZrO2 on densification and microstructure development in spark plasma sintered NbB2. Acta Materialia, 2018, 152, 215-228.	3.8	15
154	Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials, 2019, 209, 54-66.	5.7	15
155	On the origin of spectrally selective high solar absorptance of TiB2-based tandem absorber with double layer antireflection coatings. Solar Energy Materials and Solar Cells, 2021, 220, 110839.	3.0	15
156	Processing, tensile, and fracture properties of injection molded Hdpeâ€Al ₂ O ₃ â€HAp hybrid composites. Journal of Applied Polymer Science, 2011, 121, 2500-2511.	1.3	14
157	Pulsed electric field mediated in vitro cellular response of fibroblast and osteoblast-like cells on conducting austenitic stainless steel substrate. Journal of Materials Science: Materials in Medicine, 2013, 24, 1789-1798.	1.7	14
158	InÂvitro osteogenic cell proliferation, mineralization, and inÂvivo osseointegration of injection molded high-density polyethylene-based hybrid composites in rabbit animal model. Journal of Biomaterials Applications, 2014, 29, 142-157.	1.2	14
159	Microstructure-hardness-fretting wear resistance correlation in ultrafine grained Cu–TiB 2 –Pb composites. Wear, 2014, 319, 160-171.	1.5	14
160	Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. , 2017, 105, 2174-2190.		14
161	Perovskite Ceramics as New-Generation Materials for Orthopedic Applications. Transactions of the Indian Institute of Metals, 2019, 72, 1999-2010.	0.7	14
162	Electric Field-Mediated Fibronectin–Hydroxyapatite Interaction: A Molecular Insight. Journal of Physical Chemistry B, 2021, 125, 3-16.	1.2	14

#	Article	IF	CITATIONS
163	Dependence of Protein Adsorption on Wetting Behavior of UHMWPE–HA–Al2O3–CNT Hybrid Biocomposites. Jom, 2012, 64, 506-513.	0.9	13
164	On the densification mechanisms and properties of Cu–Pb and Cu–Pb–TiB2 nanocomposites densified using spark plasma sintering. Scripta Materialia, 2013, 69, 122-126.	2.6	13
165	Densification kinetics, phase assemblage and hardness of spark plasma sintered Cu–10 wt% TiB ₂ and Cu–10 wt% TiB ₂ –10 wt% Pb composites. Journal of Materials Research, 2013, 28, 1517-1528.	1.2	13
166	ZrO2-toughened Al2O3-based near-net shaped femoral head: Unique fabrication approach, 3D microstructure, burst strength and muscle cell response. Materials Science and Engineering C, 2017, 77, 1216-1227.	3.8	13
167	ZrO ₂ -toughened Al ₂ O ₃ composites with better fracture and wear resistance properties. Journal of Biomaterials Applications, 2018, 32, 1174-1186.	1.2	13
168	Probing Cytocompatibility, Hemocompatibility, and Quantitative Inflammatory Response in <i>Mus musculus</i> toward Oxide Bioceramic Wear Particulates and a Comparison with CoCr. ACS Biomaterials Science and Engineering, 2018, 4, 3194-3210.	2.6	13
169	Probing the Influence of Î ³ -Sterilization on the Oxidation, Crystallization, Sliding Wear Resistance, and Cytocompatibility of Chemically Modified Graphene-Oxide-Reinforced HDPE/UHMWPE Nanocomposites and Wear Debris. ACS Biomaterials Science and Engineering, 2020, 6, 1462-1475.	2.6	13
170	Effect of Fe ³⁺ substitution on the structural modification and band structure modulated UV absorption of hydroxyapatite. International Journal of Applied Ceramic Technology, 2021, 18, 332-344.	1.1	13
171	Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS Applied Materials & Interfaces, 2021, 13, 164-185.	4.0	13
172	Tribological Properties of a Hot-Pressed Ba-Doped S-Phase Sialon Ceramic. Journal of the American Ceramic Society, 2007, 90, 1858-1865.	1.9	12
173	Influence of MoSi ₂ Addition on Loadâ€Dependent Fretting Wear Properties of TiB ₂ Against Cemented Carbide. Journal of the American Ceramic Society, 2009, 92, 2059-2066.	1.9	12
174	Cytotoxicity and Genotoxicity Property of Hydroxyapatite-Mullite Eluates. Journal of Biomedical Nanotechnology, 2011, 7, 74-75.	0.5	12
175	Multiscale micro-patterned polymeric and carbon substrates derived from buckled photoresist films: fabrication and cytocompatibility. Journal of Materials Science, 2012, 47, 3867-3875.	1.7	12
176	Controlled Shear Flow Directs Osteogenesis on UHMWPE-Based Hybrid Nanobiocomposites in a Custom-Designed PMMA Microfluidic Device. ACS Applied Bio Materials, 2018, 1, 414-435.	2.3	12
177	Epithelial cell functionality on electroconductive Fe/Sr co-doped biphasic calcium phosphate. Journal of Biomaterials Applications, 2019, 33, 1035-1052.	1.2	12
178	Extrusionâ€based 3D printing of gelatin methacryloyl with nanocrystalline hydroxyapatite. International Journal of Applied Ceramic Technology, 2022, 19, 924-938.	1.1	12
179	Biological cell–electrical field interaction: stochastic approach. Journal of Biological Physics, 2011, 37, 39-50.	0.7	11
180	Analytical Computation of Electric Field for Onset of Electroporation. Journal of Computational and Theoretical Nanoscience, 2012, 9, 137-143.	0.4	11

#	Article	IF	CITATIONS
181	Implementing statistical modeling approach towards development of ultrafine grained bioceramics: Case of ZrO ₂ â€toughened Al ₂ O ₃ . Journal of the American Ceramic Society, 2018, 101, 1333-1343.	1.9	11
182	Reprogramming the Stem Cell Behavior by Shear Stress and Electric Field Stimulation: Lab-on-a-Chip Based Biomicrofluidics in Regenerative Medicine. Regenerative Engineering and Translational Medicine, 2019, 5, 99-127.	1.6	11
183	Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials, 2022, 281, 121331.	5.7	11
184	Sliding wear properties of high purity copper in cryogenic environment. Journal of Materials Science, 2009, 44, 2300-2309.	1.7	10
185	Hot-pressed TiB2–10wt.% TiSi2 ceramic with extremely good thermal transport properties at elevated temperatures (up to 1273K). Scripta Materialia, 2013, 68, 79-82.	2.6	10
186	Uniaxial Compactionâ€Based Manufacturing Strategy and 3D Microstructural Evaluation of Nearâ€Netâ€6haped ZrO ₂ â€Toughened Al ₂ O ₃ Acetabular Socket. Advanced Engineering Materials, 2016, 18, 1634-1644.	1.6	10
187	Probing the spectrally selective property of NbB ₂ â€based tandem absorber coating for concentrated solar power application. Journal of the American Ceramic Society, 2022, 105, 1136-1148.	1.9	10
188	Evolution in friction and wear of Mg–SiCp composites: Influence of fretting duration. Journal of Materials Research, 2005, 20, 801-812.	1.2	9
189	Mechanical and Fretting Wear Behavior of Novel (W,Ti)C-Co cermets. Journal of the American Ceramic Society, 2006, 89, 1639-1651.	1.9	9
190	Fine scale characterization of surface/subsurface and nanosized debris particles on worn Cu–10Â% Pb nanocomposites. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	9
191	Microstructure Development, Nanomechanical, and Dynamic Compression Properties of Spark Plasma Sintered TiB2-Ti-Based Homogeneous and Bi-layered Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4646-4664.	1.1	9
192	Conductivity Studies of Silverâ€, Potassiumâ€, and Magnesiumâ€Doped Hydroxyapatite. International Journal of Applied Ceramic Technology, 2015, 12, 319-328.	1.1	9
193	Spark Plasma Sintering of Ultrahigh Temperature Ceramics. , 2019, , 369-440.		9
194	SiC _{<i>x</i>} N _{<i>y</i>} O _{<i>z</i>} Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation. ACS Biomaterials Science and Engineering, 2020, 6, 5571-5587.	2.6	9
195	Electrical stimulation waveformâ€dependent osteogenesis on PVDF/BaTiO ₃ composite using a customized and programmable cell stimulator. Biotechnology and Bioengineering, 2022, 119, 1578-1597.	1.7	9
196	Six decades of UHMWPE in reconstructive surgery. International Materials Reviews, 2023, 68, 46-81.	9.4	9
197	Phase stability of silver particles embedded calcium phosphate bioceramics. Bulletin of Materials Science, 2015, 38, 525-529.	0.8	8
198	Experimental and computational analysis for thermo-erosive stability assessment of ZrB2-SiC based multiphase composites. International Journal of Refractory Metals and Hard Materials, 2019, 84, 104972.	1.7	8

#	Article	IF	CITATIONS
199	Development and Validation of a Finite Element Model of Wear in UHMWPE Liner Using Experimental Data From Hip Simulator Studies. Journal of Biomechanical Engineering, 2022, 144, .	0.6	8
200	Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite. Journal of Biomaterials Applications, 2022, 37, 204-218.	1.2	8
201	Biomaterials for Musculoskeletal Regeneration. Indian Institute of Metals Series, 2017, , .	0.2	7
202	Competition between densification and microstructure development during spark plasma sintering of B ₄ C–Eu ₂ O ₃ . Journal of the American Ceramic Society, 2018, 101, 2516-2526.	1.9	7
203	Impact of â€~core-shell' mode of printing on properties of 3D binderjet printed zirconia-alumina based bioceramics. Open Ceramics, 2020, 3, 100026.	1.0	7
204	Biomaterials Science and Implants. , 2020, , .		7
205	UHMWPEâ€MWCNTâ€nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2320-2343.	1.6	7
206	Automated Image Processing Workflow for Morphological Analysis of Fluorescence Microscopy Cell Images. Jom, 2021, 73, 2356.	0.9	7
207	Recent trends and challenges in developing boride and carbide-based solar absorbers for concentrated solar power. Solar Energy Materials and Solar Cells, 2022, 245, 111876.	3.0	7
208	Microstructure–Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 482-500.	1.1	6
209	Spark Plasma Sintering of Nanoceramic Composites. , 2014, , 177-205.		6
210	Flow Cytometry Analysis of Cytotoxicity <i>In Vitro</i> and Longâ€Term Toxicity of <scp>HA</scp> â€40Âwt% BaTiO ₃ Nanoparticles <i>In Vivo</i> . Journal of the American Ceramic Society, 2015, 98, 3202-3211.	1.9	6
211	Opportunities and challenges in processing and fabrication of ultra high temperature ceramics for hypersonic space vehicles: a case study with ZrB ₂ –SiC. Advances in Applied Ceramics, 2018, 117, s2-s8.	0.6	6
212	Probing the influence of post-processing on microstructure and in situ compression failure with in silico modeling of 3D-printed scaffolds. Journal of Materials Research, 2018, 33, 2062-2076.	1.2	6
213	Analysis of Electrical Analogue of a Biological Cell and Its Response to External Electric Field. Regenerative Engineering and Translational Medicine, 2019, 5, 10-21.	1.6	6
214	Probing Local Mechanical Properties in Polymer-Ceramic Hybrid Acetabular Sockets Using Spherical Indentation Stress-Strain Protocols. Integrating Materials and Manufacturing Innovation, 2019, 8, 257-272.	1.2	6
215	Urinary bladder and urethral tissue engineering, and 3D bioprinting approaches for urological reconstruction. Journal of Materials Research, 2021, 36, 3781-3820.	1.2	6
216	Processing and biological evaluation of porous HA/poly(methyl methacrylate) hybrid composite. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2010, 2, 161-167.	0.7	5

#	Article	IF	CITATIONS
217	Gene expression in osteoblast cells treated with submicron to nanometer hydroxyapatite-mullite eluate particles. Journal of Biomaterials Applications, 2013, 27, 891-908.	1.2	5
218	Biomimetic porous high-density polyethylene/polyethylene- <i>grafted</i> -maleic anhydride scaffold with improved <i>in vitro</i> cytocompatibility. Journal of Biomaterials Applications, 2018, 32, 1450-1463.	1.2	5
219	Development of ZrB ₂ -Based Single Layer Absorber Coating and Molten Salt Corrosion of Bulk ZrB ₂ –SiC Ceramic for Concentrated Solar Power Application. Journal of Physical Chemistry C, 2021, 125, 13581-13589.	1.5	5
220	Probing High-Temperature Electrochemical Corrosion of 316 Stainless Steel in Molten Nitrate Salt for Concentrated Solar Power Plants. Journal of Materials Engineering and Performance, 2022, 31, 4902-4908.	1.2	5
221	Orthopaedic biomaterials: current status and future perspective. Materials Technology, 2014, 29, B2-B3.	1.5	4
222	Epitaxial growth of 3C–SiC on Si(111) and (001) by laser CVD. Journal of the American Ceramic Society, 2018, 101, 3850-3856.	1.9	4
223	Epitaxial growth of 3C-SiC (111) on Si via laser CVD carbonization. Journal of Asian Ceramic Societies, 2019, 7, 312-320.	1.0	4
224	Functionalized Fluoropolymer-Compatibilized Elastomeric Bilayer Composites for Osteochondral Repair: Unraveling the Role of Substrate Stiffness and Functionalities. ACS Applied Bio Materials, 2021, 4, 8543-8558.	2.3	4
225	Novel HDPE–quasicrystal composite fabricated for wear resistance. Philosophical Magazine, 2011, 91, 2944-2953.	0.7	3
226	Structure–Property Relationship in an Electroconductive Hydroxyapatite–Titanium Disilicide Composite. International Journal of Applied Ceramic Technology, 2016, 13, 773-786.	1.1	3
227	Fundamentals of Scaffolds Fabrication Using Low Temperature Additive Manufacturing. Indian Institute of Metals Series, 2017, , 127-173.	0.2	3
228	Corrosion and Degradation of Implantable Biomaterials. Indian Institute of Metals Series, 2017, , 253-289.	0.2	3
229	Spark plasma sintered <scp>HA</scp> â€ZnO ultrafine composite: Mechanical, bactericidal, and cytocompatibility properties. International Journal of Applied Ceramic Technology, 2018, 15, 961-969.	1.1	3
230	Experimental approach to probe into mechanisms of highâ€ŧemperature erosion of NbB ₂ â€ZrO ₂ . Journal of the American Ceramic Society, 2021, 104, 3518-3530.	1.9	3
231	Dosimetry of pulsed magnetic field towards attaining bacteriostatic effect on <i>Enterococcus faecalis</i> : Implications for endodontic therapy. International Endodontic Journal, 2021, 54, 1878-1891.	2.3	3
232	Towards Understanding the Oxide Evolution in Inconel 740H and Haynes 282 in Ambient Pressure Steam Oxidation. Oxidation of Metals, 2022, 97, 509-525.	1.0	3
233	Insights into <i>In Situ</i> Compatibilization of Polydimethylsiloxane-Modified Thermoplastic Polyurethanes by Dynamic Crosslinking: Relating Experiments to Predictive Models. ACS Applied Polymer Materials, 2022, 4, 3752-3769.	2.0	3
234	HDPE-Quasicrystal Composite: Fabrication and Wear Resistance. Transactions of the Indian Institute of Metals, 2012, 65, 13-20.	0.7	2

#	Article	IF	CITATIONS
235	Probing Toxicity of Biomaterials and Biocompatibility Assessment. Indian Institute of Metals Series, 2017, , 291-351.	0.2	2
236	Critical comparison of image analysis workflows for quantitative cell morphological evaluation in assessing cell response to biomaterials. Biomedical Materials (Bristol), 2021, 16, 034101.	1.7	2
237	Pilot scale manufacturing of phase pure and highly crystalline hydroxyapatite: Lessons learnt and process protocols. International Journal of Applied Ceramic Technology, 0, , .	1.1	2
238	Case Study: Hydroxyapatite–Titanium Bulk Composites for Bone Tissue Engineering Applications. Indian Institute of Metals Series, 2017, , 15-44.	0.2	1
239	Load dependent fretting wear properties of 3Y-TZP nanoceramics. Transactions of the Indian Institute of Metals, 2008, 61, 145-149.	0.7	Ο
240	Impedance Spectroscopy and Structural Studies on Silver Doped Hydroxyapatite. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	0
241	Case Study: Max Phase—Ti ₃ Sic ₂ ., 2011, , 185-196.		0
242	Case Study: Transformationâ€Toughened Zirconia. , 2011, , 142-166.		0
243	Case Study: Sialon Ceramics. , 2011, , 167-184.		0
244	Case Study: Titanium Diboride Ceramics and Composites. , 2011, , 197-210.		0
245	Case Study: Polymerâ€Ceramic Biocomposites. , 2011, , 233-250.		0
246	Case Study: Nanocrystalline Yttriaâ€Stabilized Tetragonal Zirconia Polycrystalline Ceramics. , 2011, , 325-337.		0
247	Case Study: Nanostructured Tungsten Carbide–Zirconia Nanocomposites. , 2011, , 338-350.		0
248	Case Study: Magnesium–Silicon Carbide Particulateâ€Reinforced Composites. , 2011, , 362-376.		0
249	Case Study: Titanium Carbonitride–Nickelâ€Based Cermets. , 2011, , 377-406.		0
250	Case Study: (W,Ti)C–Co Cermets. , 2011, , 407-419.		0
251	Case Study: Sliding Wear of Alumina in a Cryogenic Environment. , 2011, , 439-453.		0
252	Case Study: Sliding Wear of Selfâ€Mated Tetragonal Zirconia Ceramics in Liquid Nitrogen. , 2011, , 454-468.		0

#	Article	IF	CITATIONS
253	Case Study: Sliding Wear of Silicon Carbide in a Cryogenic Environment. , 2011, , 469-484.		0
254	Case Study: Glassâ€Infiltrated Alumina. , 2011, , 276-286.		0
255	Case Study: Natural Tooth and Dental Restorative Materials. , 2011, , 251-275.		0
256	Piezoelectric Perovskites as Electroconductive Bone Analogues: Processing-Structure-Biocompatibility Related Challenges. SSRN Electronic Journal, 2019, , .	0.4	0
257	Three Dimensional Porous Scaffolds: Mechanical and Biocompatibility Properties. Indian Institute of Metals Series, 2017, , 353-384.	0.2	0
258	Case Study: Development of Acetabular Socket Prototype. Indian Institute of Metals Series, 2017, , 151-171.	0.2	0
259	Case Study: Osseointegration of Strontium Containing Glass Ceramic. Indian Institute of Metals Series, 2017, , 73-98.	0.2	0
260	Processing, Tensile and Fracture Properties of Injection Molded HDPE–Al2O3–HAp Hybrid Composites. Indian Institute of Metals Series, 2017, , 125-150.	0.2	0
261	Ceramics for Armor Applications. , 2020, , 245-260.		0
262	Angular absorptance and thermal degradation analysis of TiB ₂ /Ti(B,N)/SiON/SiO ₂ multilayer solar absorber coating. Journal of the American Ceramic Society, 0, , .	1.9	0