
Robert A Cherny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11747163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Compound ATH434 Prevents Alpha-Synuclein Toxicity in a Murine Model of Multiple System Atrophy. Journal of Parkinson's Disease, 2022, 12, 105-115.	1.5	9
2	ATH434 Reverses Colorectal Dysfunction in the A53T Mouse Model of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 1821-1832.	1.5	5
3	Targeting metals rescues the phenotype in an animal model of tauopathy. Metallomics, 2018, 10, 1339-1347.	1.0	20
4	Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage. Antioxidants and Redox Signaling, 2017, 27, 567-582.	2.5	38
5	Direct determination of zinc in plasma by graphite furnace atomic absorption spectrometry using palladium/magnesium and EDTA matrix modification with high temperature pyrolysis. Journal of Analytical Atomic Spectrometry, 2017, 32, 843-847.	1.6	12
6	The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 53.	2.4	77
7	Amyloid-β Peptide Aβ3pE-42 Induces Lipid Peroxidation, Membrane Permeabilization, and Calcium Influx in Neurons. Journal of Biological Chemistry, 2016, 291, 6134-6145.	1.6	74
8	Effects of Neonatal Iron Feeding and Chronic Clioquinol Administration on the Parkinsonian Human A53T Transgenic Mouse. ACS Chemical Neuroscience, 2016, 7, 360-366.	1.7	32
9	Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans. Chemical Science, 2015, 6, 2952-2962.	3.7	86
10	Decreased Plasma Iron in Alzheimer's Disease Is Due to Transferrin Desaturation. ACS Chemical Neuroscience, 2015, 6, 398-402.	1.7	75
11	High Order W02-Reactive Stable Oligomers of Amyloid-β are Produced in vivo and in vitro via Dialysis and Filtration of Synthetic Amyloid-I² Monomer. Journal of Alzheimer's Disease, 2015, 44, 69-78.	1.2	2
12	Parkinson's Disease Iron Deposition Caused by Nitric Oxide-Induced Loss of β-Amyloid Precursor Protein. Journal of Neuroscience, 2015, 35, 3591-3597.	1.7	109
13	A novel approach to rapidly prevent ageâ€related cognitive decline. Aging Cell, 2014, 13, 351-359.	3.0	46
14	Decreased serum zinc is an effect of ageing and not Alzheimer's disease. Metallomics, 2014, 6, 1216-1219.	1.0	34
15	The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue. Journal of Analytical Atomic Spectrometry, 2014, 29, 565-570.	1.6	45
16	An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chemical Science, 2014, 5, 2160-2169.	3.7	98
17	Altered selenium status in Huntington's disease: Neuroprotection by selenite in the N171-82Q mouse model. Neurobiology of Disease, 2014, 71, 34-42.	2.1	39
18	Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease. Molecular Neurodegeneration, 2014, 9, 27.	4.4	60

#	Article	IF	CITATIONS
19	Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry. Metallomics, 2013, 5, 1656.	1.0	39
20	The effect of dopamine on MPTP-induced rotarod disability. Neuroscience Letters, 2013, 543, 105-109.	1.0	25
21	Decreased Copper in Alzheimer's Disease Brain Is Predominantly in the Soluble Extractable Fraction. International Journal of Alzheimer's Disease, 2013, 2013, 1-7.	1.1	36
22	PBT2 Reduces Toxicity in a C. elegans Model of polyQ Aggregation and Extends Lifespan, Reduces Striatal Atrophy and Improves Motor Performance in the R6/2 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 211-219.	0.9	57
23	The hypoxia imaging agent Cull(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. Journal of Experimental Medicine, 2012, 209, 837-854.	4.2	151
24	Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nature Medicine, 2012, 18, 291-295.	15.2	491
25	Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Molecular Neurodegeneration, 2012, 7, 57.	4.4	188
26	Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radical Biology and Medicine, 2012, 52, 298-302.	1.3	144
27	Copper and Alzheimer Disease: The Good, the Bad and the Ugly. , 2012, , 609-645.		0
28	The Alzheimer's therapeutic PBT2 promotes amyloidâ€Î² degradation and GSK3 phosphorylation via a metal chaperone activity. Journal of Neurochemistry, 2011, 119, 220-230.	2.1	167
29	Cysteine Oxidation within N-terminal Mutant Huntingtin Promotes Oligomerization and Delays Clearance of Soluble Protein. Journal of Biological Chemistry, 2011, 286, 18320-18330.	1.6	54
30	Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain. Metallomics, 2010, 2, 745.	1.0	72
31	Pyroglutamate-Aβ: Role in the natural history of Alzheimer's disease. International Journal of Biochemistry and Cell Biology, 2010, 42, 1915-1918.	1.2	67
32	Paradoxical Condensation of Copper with Elevated β-Amyloid in Lipid Rafts under Cellular Copper Deficiency Conditions. Journal of Biological Chemistry, 2009, 284, 21899-21907.	1.6	55
33	Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 381-386.	3.3	259
34	The Caenorhabditis elegans Aβ1–42 Model of Alzheimer Disease Predominantly Expresses Aβ3–42. Journal of Biological Chemistry, 2009, 284, 22697-22702.	1.6	108
35	Intracellular amyloid formation in muscle cells of AÎ ² -transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Molecular Neurodegeneration, 2009, 4, 2.	4.4	39
36	Restored degradation of the Alzheimer's amyloidâ€Ĵ² peptide by targeting amyloid formation. Journal of Neurochemistry, 2009, 108, 1198-1207.	2.1	85

#	Article	IF	CITATIONS
37	Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiology of Aging, 2009, 30, 1069-1077.	1.5	126
38	Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models. Metallomics, 2009, 1, 53-58.	1.0	118
39	Plasma Amyloid β42 and Amyloid β40 Levels Are Associated With Early Cognitive Dysfunction After Cardiac Surgery. Annals of Thoracic Surgery, 2009, 88, 1426-1432.	0.7	35
40	Clioquinol Protects Against Cell Death in Parkinson's Disease Models In Vivo and In Vitro. Advances in Behavioral Biology, 2009, , 431-442.	0.2	7
41	Investigating copperâ€regulated protein expression in Menkes fibroblasts using antibody microarrays. Proteomics, 2008, 8, 1819-1831.	1.3	8
42	Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ. Neuron, 2008, 59, 43-55.	3.8	629
43	Selective Intracellular Release of Copper and Zinc Ions from Bis(thiosemicarbazonato) Complexes Reduces Levels of Alzheimer Disease Amyloid-1² Peptide. Journal of Biological Chemistry, 2008, 283, 4568-4577.	1.6	177
44	Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer's disease. Proceedings of the United States of America, 2008, 105, 6813-6818.	3.3	182
45	Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiology of Aging, 2007, 28, 907-913.	1.5	127
46	Differential modulation of Alzheimer's disease amyloid β-peptide accumulation by diverse classes of metal ligands. Biochemical Journal, 2007, 407, 435-450.	1.7	58
47	Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau. PLoS ONE, 2007, 2, e536.	1.1	291
48	Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegeneration. Brain Research, 2007, 1140, 188-194.	1.1	36
49	The Aβcentric Pathway of Alzheimer's Disease. , 2007, , 5-36.		1
50	Mechanisms of Copper Ion Mediated Huntington's Disease Progression. PLoS ONE, 2007, 2, e334.	1.1	159
51	Dimerisation ofN-acetyl-l-tyrosine ethyl ester and Aβ peptides via formation of dityrosine. Free Radical Research, 2006, 40, 1-9.	1.5	22
52	Radioiodinated clioquinol as a biomarker for beta-amyloid: Zn2+ complexes in Alzheimer's disease. Aging Cell, 2006, 5, 69-79.	3.0	74
53	Overexpression of AÎ ² is associated with acceleration of onset of motor impairment and superoxide dismutase 1 aggregation in an amyotrophic lateral sclerosis mouse model. Aging Cell, 2006, 5, 153-165.	3.0	37
54	Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: Implications for Alzheimer β-amyloid pathology. Journal of Inorganic Biochemistry, 2006, 100, 952-962.	1.5	93

#	Article	IF	CITATIONS
55	Degradation of the Alzheimer Disease Amyloid \hat{l}^2 -Peptide by Metal-dependent Up-regulation of Metalloprotease Activity. Journal of Biological Chemistry, 2006, 281, 17670-17680.	1.6	267
56	Hypoxia-inducible Factor Prolyl 4-Hydroxylase Inhibition. Journal of Biological Chemistry, 2005, 280, 41732-41743.	1.6	265
57	Methionine regulates copper/hydrogen peroxide oxidation products of Aβ. Journal of Peptide Science, 2005, 11, 353-360.	0.8	88
58	Copper-Dependent Inhibition of Human Cytochrome c Oxidase by a Dimeric Conformer of Amyloid-Â1-42. Journal of Neuroscience, 2005, 25, 672-679.	1.7	315
59	Methylation of the Imidazole Side Chains of the Alzheimer Disease Amyloid-β Peptide Results in Abolition of Superoxide Dismutase-like Structures and Inhibition of Neurotoxicity. Journal of Biological Chemistry, 2005, 280, 13355-13363.	1.6	110
60	Dopamine promotes αâ€ s ynuclein aggregation into SDSâ€ r esistant soluble oligomers via a distinct folding pathway. FASEB Journal, 2005, 19, 1377-1379.	0.2	239
61	Alzheimer disease Î ² -amyloid activity mimics cholesterol oxidase. Journal of Clinical Investigation, 2005, 115, 2556-2563.	3.9	125
62	Neuronal Zinc Exchange with the Blood Vessel Wall Promotes Cerebral Amyloid Angiopathy in an Animal Model of Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 3453-3459.	1.7	135
63	Enhanced Toxicity and Cellular Binding of a Modified Amyloid β Peptide with a Methionine to Valine Substitution. Journal of Biological Chemistry, 2004, 279, 42528-42534.	1.6	99
64	Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease βâ€amyloid. FASEB Journal, 2004, 18, 1427-1429.	0.2	251
65	Genetically Decreased Spinal Cord Copper Concentration Prolongs Life in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2004, 24, 7945-7950.	1.7	50
66	Estrogen Decreases Zinc Transporter 3 Expression and Synaptic Vesicle Zinc Levels in Mouse Brain. Journal of Biological Chemistry, 2004, 279, 8602-8607.	1.6	80
67	Iron inhibits neurotoxicity induced by trace copper and biological reductants. Journal of Biological Inorganic Chemistry, 2004, 9, 269-280.	1.1	42
68	Characterizing bathocuproine self-association and subsequent binding to Alzheimer's disease amyloidβ-peptide by NMR. Journal of Peptide Science, 2004, 10, 210-217.	0.8	24
69	Methionine oxidation: Implications for the mechanism of toxicity of the β-amyloid peptide from Alzheimer's disease. International Journal of Peptide Research and Therapeutics, 2003, 10, 413-417.	0.1	13
70	Methionine oxidation: Implications for the mechanism of toxicity of the β-amyloid peptide from Alzheimer's disease. International Journal of Peptide Research and Therapeutics, 2003, 10, 413-417.	0.9	6
71	Cytosolic Î ² -amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease. Lancet, The, 2003, 361, 1258-1265.	6.3	323
72	Genetic or Pharmacological Iron Chelation Prevents MPTP-Induced Neurotoxicity In Vivo. Neuron, 2003, 37, 899-909.	3.8	594

#	Article	IF	CITATIONS
73	Neurotoxic, Redox-competent Alzheimer's β-Amyloid Is Released from Lipid Membrane by Methionine Oxidation. Journal of Biological Chemistry, 2003, 278, 42959-42965.	1.6	176
74	Overexpression of Alzheimer's Disease Amyloid-β Opposes the Age-dependent Elevations of Brain Copper and Iron. Journal of Biological Chemistry, 2002, 277, 44670-44676.	1.6	324
75	Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid. Journal of Biological Chemistry, 2002, 277, 40302.40308.	1.6	536
76	Intracellular Accumulation of Detergent-Soluble Amyloidogenic AÎ ² Fragment of Alzheimer's Disease Precursor Protein in the Hippocampus of Aged Transgenic Mice. Journal of Neurochemistry, 2002, 72, 2479-2487.	2.1	74
77	Copper and Zinc Binding Modulates the Aggregation and Neurotoxic Properties of the Prion Peptide PrP106â^'126. Biochemistry, 2001, 40, 8073-8084.	1.2	264
78	Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits β-Amyloid Accumulation in Alzheimer's Disease Transgenic Mice. Neuron, 2001, 30, 665-676.	3.8	1,419
79	Alzheimer's Disease Amyloid-β Binds Copper and Zinc to Generate an Allosterically Ordered Membrane-penetrating Structure Containing Superoxide Dismutase-like Subunits. Journal of Biological Chemistry, 2001, 276, 20466-20473.	1.6	595
80	Chelation and Intercalation: Complementary Properties in a Compound for the Treatment of Alzheimer's Disease. Journal of Structural Biology, 2000, 130, 209-216.	1.3	81
81	Soluble pool of A? amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Annals of Neurology, 1999, 46, 860-866.	2.8	1,721
82	Aqueous Dissolution of Alzheimer's Disease AÎ ² Amyloid Deposits by Biometal Depletion. Journal of Biological Chemistry, 1999, 274, 23223-23228.	1.6	454
83	Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. , 1999, 46, 860.		5