Youngmok Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11746888/publications.pdf Version: 2024-02-01

YOUNCMOR LEON

#	Article	IF	CITATIONS
1	A novel hybrid difference method for an elliptic equation. Applied Mathematics and Computation, 2022, 415, 126702.	2.2	1
2	An immersed hybrid difference method for the elliptic interface equation. Japan Journal of Industrial and Applied Mathematics, 2022, 39, 669-692.	0.9	1
3	Immersed hybrid difference methods for elliptic boundary value problems by artificial interface conditions. Electronic Research Archive, 2021, 29, 3361-3382.	0.9	1
4	Numerical analysis of interface hybrid difference methods for elliptic interface equations. Journal of Computational and Applied Mathematics, 2020, 377, 112869.	2.0	1
5	The Crank–Nicolson hybrid difference method for the time wave equation on exterior domains with the discrete radial absorbing boundary condition. Wave Motion, 2019, 86, 32-43.	2.0	1
6	Hybrid Spectral Difference Methods for Elliptic Equations on Exterior Domains with the Discrete Radial Absorbing Boundary Condition. Journal of Scientific Computing, 2018, 75, 889-905.	2.3	5
7	The upwind hybrid difference methods for a convection diffusion equation. Applied Numerical Mathematics, 2018, 133, 69-82.	2.1	5
8	Upwind Hybrid Spectral Difference Methods for Steady-State Navier–Stokes Equations. , 2018, , 621-644.		2
9	Hybrid Spectral Difference Methods for an Elliptic Equation. Computational Methods in Applied Mathematics, 2017, 17, 253-267.	0.8	10
10	A hybrid discontinuous Galerkin method for advection–diffusion–reaction problems. Applied Numerical Mathematics, 2015, 95, 292-303.	2.1	12
11	Hybridized SUPG and Upwind numerical schemes for convection dominated diffusion problems. Journal of Computational and Applied Mathematics, 2015, 275, 91-99.	2.0	7
12	Hybrid Difference Methods for PDEs. Journal of Scientific Computing, 2015, 64, 508-521.	2.3	9
13	A nonconforming quadrilateral element with maximal inf-sup constant. Numerical Methods for Partial Differential Equations, 2014, 30, 120-132.	3.6	3
14	A flux preserving immersed nonconforming finite element method for elliptic problems. Applied Numerical Mathematics, 2014, 81, 94-104.	2.1	1
15	New locally conservative finite element methods on a rectangular mesh. Numerische Mathematik, 2013, 123, 97-119.	1.9	14
16	A locking-free locally conservative hybridized scheme for elasticity problems. Japan Journal of Industrial and Applied Mathematics, 2013, 30, 585-603.	0.9	5
17	Analysis of the cell boundary element methods for convection dominated convection–diffusion equations. Journal of Computational and Applied Mathematics, 2010, 234, 2469-2482.	2.0	3
18	A Hybrid Discontinuous Galerkin Method for Elliptic Problems. SIAM Journal on Numerical Analysis, 2010, 48, 1968-1983.	2.3	25

YOUNGMOK JEON

#	Article	IF	CITATIONS
19	The CBEM–BEM coupling for elliptic problems. Applied Numerical Mathematics, 2009, 59, 2374-2387.	2.1	2
20	A multiscale cell boundary element method for elliptic problems. Applied Numerical Mathematics, 2009, 59, 2801-2813.	2.1	5
21	Nonconforming cell boundary element methods for elliptic problems on triangular mesh. Applied Numerical Mathematics, 2008, 58, 800-814.	2.1	14
22	Cell boundary element methods for convection-diffusion equations. Communications on Pure and Applied Analysis, 2006, 5, 309-319.	0.8	3
23	A cell boundary element method for elliptic problems. Numerical Methods for Partial Differential Equations, 2005, 21, 496-511.	3.6	6
24	Analysis of a cell boundary element method. Advances in Computational Mathematics, 2005, 22, 201-222.	1.6	12
25	A New Boundary Element Method for the Biharmonic Equation with Dirichlet Boundary Conditions. Advances in Computational Mathematics, 2003, 19, 339-354.	1.6	6
26	New indirect scalar boundary integral equation formulas for the biharmonic equation. Journal of Computational and Applied Mathematics, 2001, 135, 313-324.	2.0	13
27	A quadrature method for constant-coefficient Cauchy singular integral equations on an interval. ANZIAM Journal, 2000, 42, 287-311.	0.2	0
28	Scalar boundary integral equation formulas for the biharmonic equation — numerical experiments. Journal of Computational and Applied Mathematics, 2000, 115, 269-282.	2.0	3
29	New boundary element formulas for the biharmonic equation. Advances in Computational Mathematics, 1998, 9, 97-115.	1.6	10
30	New boundary element formulas for plane elasticity. Journal of Computational and Applied Mathematics, 1998, 89, 263-274.	2.0	0
31	An Indirect Boundary Integral Equation Method for the Biharmonic Equation. SIAM Journal on Numerical Analysis, 1994, 31, 461-476.	2.3	18
32	Analysis of hybrid discontinuous Galerkin methods for linearized Navier–Stokes equations. Numerical Methods for Partial Differential Equations, 0, , .	3.6	1