Kailas L Wasewar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perspective of reactive separation of levulinic acid in conceptual mixer settler reactor. Environmental Science and Pollution Research, 2023, 30, 24890-24898.	2.7	Ο
2	Doped graphitic carbon nitride (g-C3N4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments. Environmental Science and Pollution Research, 2023, 30, 24919-24926.	2.7	20
3	Optimization and experimental design by response surface method for reactive extraction of glutaric acid. International Journal of Chemical Reactor Engineering, 2022, 20, 511-520.	0.6	6
4	Butanol recovery using ionic liquids as green solvents. Journal of Chemical Technology and Biotechnology, 2022, 97, 873-884.	1.6	9
5	Experimental investigation using conventional and natural extractants for liquid-liquid extraction of glutaric acid. Chemical Data Collections, 2022, 37, 100790.	1.1	7
6	Liquid-liquid extraction of lactic acid using non-toxic solvents. Chemical Data Collections, 2022, 38, 100823.	1.1	4
7	Separation of succinic acid from aqueous phase using nontoxic solvents. Chemical Data Collections, 2022, 39, 100866.	1.1	4
8	Separation of 4-hydroxy-3-methoxybenzoic acid with 2-ethyl hexanol, isobutyl acetate and 1-butanol. Chemical Data Collections, 2022, 39, 100858.	1.1	1
9	Performance of Pd catalyst supported on trimetallic nanohybrid Zr–Al–La in hydrogenation of ethylanthraquinone. International Journal of Chemical Reactor Engineering, 2022, 20, 1235-1250.	0.6	1
10	Perspective of sustainable and intensified developments in treatment of pesticides from aqueous streams. , 2022, , 517-562.		0
11	Progress and prospective of heterogeneous catalysts for H2O2 production via anthraquinone process. Environmental Science and Pollution Research, 2022, 29, 86468-86484.	2.7	12
12	Reactive Extraction of 4 Hydroxybenzoic Acid Using Tri- <i>n</i> -Butyl Phosphate in Toluene and Petroleum Ether at 298 K. Journal of Chemical & Engineering Data, 2022, 67, 2505-2513.	1.0	1
13	Process intensification and green engineering in process industry. , 2022, , 433-459.		0
14	Sustainability and process intensification in wastewater treatment. , 2022, , 365-402.		0
15	Experimental investigation on recovery of bioâ€based protocatechuic acid using ionic liquids. Journal of Chemical Technology and Biotechnology, 2022, 97, 3144-3151.	1.6	3
16	Efficacy of natural oils and conventional chemicals in the physical extraction of 4-hydroxybenzoic acid from aqueous solution. Journal of the Indian Chemical Society, 2022, 99, 100636.	1.3	3
17	Palladium supported on nano-hybrid Zr–Al–La catalyst for hydrogenation of 2-ethylanthraquinone. Indian Chemical Engineer, 2021, 63, 387-401.	0.9	3
18	Intensification of hydrogen generation through liquid metal gallium in water splitting reaction using aluminum in presence of potassium hydroxide. Chemical Engineering Communications, 2021, 208, 126-136.	1.5	5

#	Article	IF	CITATIONS
19	Process intensification in wastewater treatments: basics of process intensification and inorganic pollutants. , 2021, , 313-337.		Ο
20	Experimental Investigation on Reactive Extraction of Vanillic Acid with the Help of Tri- <i>n</i> -butyl Phosphate in Various Diluents (Decanol, Kerosene, and Soybean Oil) at a Constant Room Temperature of 298.15 ± 1 K. Journal of Chemical & Engineering Data, 2021, 66, 999-1010.	1.0	6
21	Effect of aluminium nanoparticles on rheology of AP based composite propellant: experimental study and mathematical modelling. Molecular Simulation, 2021, 47, 526-535.	0.9	2
22	Reactive Extraction as an Intensifying Approach for the Recovery of Organic Acids from Aqueous Solution: A Comprehensive Review on Experimental and Theoretical Studies. Journal of Chemical & Engineering Data, 2021, 66, 1557-1573.	1.0	29
23	Separation of bio-products by liquid–liquid extraction. Physical Sciences Reviews, 2021, 6, .	0.8	4
24	Synthesis, characterization, and application of hollow ceramic microsphere based Pd catalyst for hydrogenation of 2-ethylanthraquinone. Journal of the Indian Chemical Society, 2021, 98, 100177.	1.3	2
25	Central Composite Design Approach for Optimization of Levulinic Acid Separation by Reactive Components. Industrial & Engineering Chemistry Research, 2021, 60, 13692-13700.	1.8	12
26	Extractive separation of 4- hydroxybenzoic acid from aqueous solution using nontoxic and conventional solvents. Chemical Data Collections, 2021, 36, 100782.	1.1	6
27	Reactive extraction: a promising approach to separate protocatechuic acid. Environmental Science and Pollution Research, 2020, 27, 27345-27357.	2.7	28
28	Pervaporation Reactor for Enhanced Esterification of Lactic Acid and Isobutyl Alcohol. Chemical Engineering and Technology, 2020, 43, 282-288.	0.9	5
29	Experimental investigation on extractive separation of vanillic acid. Chemical Data Collections, 2020, 30, 100564.	1.1	9
30	Experimental perspective for reactive separation of malonic acid using TBP in natural non-toxic solvents. Journal of Industrial and Engineering Chemistry, 2020, 91, 273-284.	2.9	12
31	Response Surface Methodology and Artificial Neural Networks for Optimization of Catalytic Esterification of Lactic Acid. Chemical Engineering and Technology, 2020, 43, 2315-2324.	0.9	5
32	Separation of Levulinic Acid by Reaction with Tri- <i>n</i> -butylphosphate Diluted in Nontoxic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 3002-3007.	1.0	13
33	Extractive separation of levulinic acid using natural and chemical solvents. Chemical Data Collections, 2020, 28, 100417.	1.1	23
34	Effect of temperature on equilibria for physical and reactive extraction of protocatechuic acid. Heliyon, 2020, 6, e03664.	1.4	23
35	Feasibility study of phosphonium ionic liquids as efficient solvent for sulfur extraction from liquid fuels. AIP Conference Proceedings, 2019, , .	0.3	5
36	Adsorption performance of packed bed column for benzylformic acid removal using CaO2 nanoparticles. Chemical Data Collections, 2019, 23, 100267.	1.1	18

#	Article	IF	CITATIONS
37	Separation of Butanol Using Tetradecyl(trihexyl)phosphonium Bis(2,4,4-trimethylpentyl)phosphinate, Oleyl Alcohol, and Castor Oil. Journal of Chemical & Engineering Data, 2019, 64, 5079-5088.	1.0	7
38	A step forward in the development ofin situproduct recovery by reactive separation of protocatechuic acid. Reaction Chemistry and Engineering, 2019, 4, 78-89.	1.9	14
39	Dynamic shear rheology of nanocomposite propellant suspension. Emerging Materials Research, 2019, 8, 258-264.	0.4	3
40	Separation of butanol using natural non-toxic solvents and conventional chemical solvents. Chemical Data Collections, 2019, 21, 100225.	1.1	2
41	Influence of the addition of aluminium nanoparticles on thermo-rheological properties of hydroxyl-terminated polybutadiene-based composite propellant and empirical modelling. Journal of Thermal Analysis and Calorimetry, 2019, 138, 211-223.	2.0	8
42	Separation of Protocatechuic Acid Using Tri- <i>n</i> -Octylamine: Experimental and Mathematical Investigation. Journal of Chemical & Engineering Data, 2019, 64, 1101-1112.	1.0	19
43	Pervaporationâ€Assisted Esterification of Caproic Acid with Isobutanol in Conventional, In Situ, and Ex Situ Reactors. Chemical Engineering and Technology, 2019, 42, 1002-1010.	0.9	7
44	Experimental Study on Reactive Extraction of Malonic Acid with Validation by Fourier Transform Infrared Spectroscopy. Journal of Chemical & Engineering Data, 2019, 64, 1072-1084.	1.0	22
45	Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant. Journal of Energetic Materials, 2019, 37, 125-140.	1.0	24
46	Efficacy of tri- <i>n</i> -octylamine, tri- <i>n</i> -butyl phosphate and di-(2-ethylhexyl) phosphoric acid for reactive separation of protocatechuic acid. Separation Science and Technology, 2019, 54, 3100-3114.	1.3	15
47	Hydrogen Generation in an Annular Micro-Reactor: an Experimental Investigation of Water Splitting Reaction Using Aluminum in Presence of Potassium Hydroxide. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	0
48	Potassium Hydroxide Activated Hydrogen Generation Using Aluminum in Water Splitting Reaction. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	3
49	Separation of Protocatechuic Acid Using Di-(2-ethylhexyl)phosphoric Acid in Isobutyl Acetate, Toluene, and Petroleum Ether. Journal of Chemical & Engineering Data, 2018, 63, 587-597.	1.0	25
50	Optimization of Process Parameters for Reactive Separation of Gallic Acid. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	4
51	Kinetics Study and Parametric Sensitivity Analysis of Esterification of Butyric Acid with Benzyl Alcohol: A Taguchi Methodology Approach. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	1
52	Hydrogen Generation in an Annular Micro-Reactor: An Experimental Investigation and Reaction Modelling by Shrinking Core Model (SCM). International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	3
53	Experimental and modeling of reactive separation of protocatechuic acid. Chemical Engineering Research and Design, 2018, 132, 593-605.	2.7	34
54	Synthesis of CaO2 Nanoparticles for Environmental Remediation. Water Science and Technology Library, 2018, , 69-76.	0.2	2

#	Article	IF	CITATIONS
55	Synthesis of cenosphere supported heterogeneous catalyst and its performance in esterification reaction. Chemical Engineering Communications, 2018, 205, 238-248.	1.5	21
56	Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 535-554.	0.8	8
57	Kinetics, mass transfer, and thermodynamic and statistical modeling study for esterification of valeric acid with <i>n</i> â€butanol: Homogeneous and heterogeneous catalysis. International Journal of Chemical Kinetics, 2018, 50, 710-725.	1.0	8
58	Rheological and wall-slip behaviour of composite propellant suspension containing Al-nanopowder. Journal of Energetic Materials, 2018, 36, 468-484.	1.0	8
59	Assessment of the Efficiency of Aliquat 336+Rice Bran Oil for Separation of Acrylic Acid from Aqueous Solution Using Reactive Extraction. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	3
60	Extractive separation of protocatechuic acid using natural non-toxic solvents and conventional solvents. Chemical Data Collections, 2018, 15-16, 244-253.	1.1	20
61	Hydrogen Generation in Water Splitting Reaction Using Aluminum: Effect of NaOH Concentration and Reaction Modelling Using SCM. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	3
62	Modeling and Optimization of Reactive Extraction of Isonicotinic Acid Using Tri- <i>n</i> -octylamine in Biocompatible Diluents Mixture: Response Surface Methodology and Regeneration of Solvents. Industrial & Engineering Chemistry Research, 2018, 57, 12485-12493.	1.8	10
63	Reactive separation of protocatechuic acid using Tri-n-octyl amine and Di-(2-ethylhexyl) phosphoric acid in Methyl isobutyl ketone. Separation and Purification Technology, 2018, 207, 99-107.	3.9	32
64	Reactive Extraction of Caproic Acid using Tri-n- Butyl Phosphate (TBP) in Non Toxic Diluents. International Journal of ChemTech Research, 2018, 11, 56-62.	0.1	6
65	Modeling and Optimization of Reactive Extraction of Gallic Acid Using RSM. Chemical Engineering Communications, 2017, 204, 522-528.	1.5	18
66	Response Surface Optimization and Kinetics of Isopropyl Palmitate Synthesis using Homogeneous Acid Catalyst. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	6
67	Process intensification of esterification reaction for the production of propyl butyrate by pervaporation. Resource-efficient Technologies, 2017, 3, 88-93.	0.1	10
68	Optimization of adsorptive removal of α-toluic acid by CaO 2 nanoparticles using response surface methodology. Resource-efficient Technologies, 2017, 3, 329-336.	0.1	10
69	Removal of Phenylacetic Acid from Aqueous Streams. Springer Proceedings in Energy, 2017, , 209-213.	0.2	0
70	Coupling of in-situ pervaporation for the enhanced esterification of propionic acid with isobutyl alcohol over cenosphere based catalyst. Chemical Engineering and Processing: Process Intensification, 2017, 119, 16-24.	1.8	19
71	Experimental and Modeling Study of Esterification Reaction for Synthesis of Butyl Butyrate: Desirability Function Approach for Optimization and Prediction Comparative Study of RSM and ANN. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	5
72	Reactive extraction of acrylic acid with triâ€nâ€butyl phosphate in natural oils. Journal of Chemical Technology and Biotechnology, 2017, 92, 2825-2834.	1.6	34

#	Article	IF	CITATIONS
73	Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Waste Management and Research, 2017, 35, 563-580.	2.2	62
74	Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. Journal of Fluorine Chemistry, 2017, 194, 23-32.	0.9	88
75	Development of nanohybrid adsorbent for defluoridation from aqueous systems. Chemosphere, 2017, 188, 354-366.	4.2	22
76	Separation of phenylacetic acid using tri-n-butyl phosphate in hexanol: Equilibrium and kinetics. Separation Science and Technology, 2017, , 1-8.	1.3	6
77	Optimization for benzeneacetic acid removal from aqueous solution using CaO 2 nanoparticles based on Taguchi method. Journal of Applied Research and Technology, 2017, 15, 332-339.	0.6	32
78	L(+)-tartaric Acid Separations Using Aliquat 336 in <i>n</i> -Heptane, Kerosene, and 1-Octanol at 300 ± 1 K. Journal of Chemical & Engineering Data, 2017, 62, 4047-4063.	1.0	29
79	Recovery of Glutaric Acid Using Tri-N-Butyl Phosphate: Effect of Diluents and Temperature. Journal of Chemical Engineering & Process Technology, 2017, 08, .	0.1	6
80	Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. Arabian Journal of Chemistry, 2016, 9, 578-587.	2.3	109
81	A real-time simulating non-isothermal mathematical model for the passive feed direct methanol fuel cell. International Journal of Green Energy, 2016, 13, 213-228.	2.1	6
82	Ionic liquids: energy efficient novel solvent for the extractive desulphurisation of liquid fuels. International Journal of Energy Technology and Policy, 2016, 12, 105.	0.1	2
83	Adsorption kinetics, thermodynamics, and equilibrium of $\hat{1}\pm$ -toluic acid onto calcium peroxide nanoparticles. Advanced Powder Technology, 2016, 27, 2112-2120.	2.0	62
84	Effect of Temperature on Reactive Extraction of Gallic Acid Using Tri- <i>n</i> -butyl Phosphate, Tri- <i>n</i> -octylamine and Aliquat 336. Journal of Chemical & Engineering Data, 2016, 61, 3217-3224.	1.0	45
85	Modeling the adsorption of benzeneacetic acid on CaO2 nanoparticles using artificial neural network. Resource-efficient Technologies, 2016, 2, S53-S62.	0.1	15
86	Reactive Separation of Benzeneacetic Acid with Tri-n-caprylyl Amine: Equilibrium and Modeling. Journal of Chemical & Engineering Data, 2016, 61, 2335-2345.	1.0	11
87	Reactive extraction of gallic acid with tri-n-caprylylamine. New Journal of Chemistry, 2016, 40, 2413-2417.	1.4	35
88	Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO 2 –ethylene glycol nanofluid. International Communications in Heat and Mass Transfer, 2016, 73, 54-61.	2.9	98
89	Removal of Fluoride from Aqueous Solution by Using Low-Cost Sugarcane Bagasse: Kinetic Study and Equilibrium Isotherm Analyses. Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 20, .	1.2	35
90	Comparative study of different waste biomass for energy application. Waste Management, 2016, 47, 40-45.	3.7	107

#	Article	IF	CITATIONS
91	Adsorption of α-toluic acid by calcium peroxide nanoparticles. Desalination and Water Treatment, 2016, 57, 16507-16513.	1.0	21
92	Synthesis, characterization, and application of 1-butyl-3-methylimidazolium thiocyanate for extractive desulfurization of liquid fuel. Environmental Science and Pollution Research, 2016, 23, 9284-9294.	2.7	22
93	Separation of Organic and Inorganic Compounds for Specific Applications. Journal of Chemistry, 2015, 2015, 1-3.	0.9	8
94	Imidazolium ionic liquid as energy efficient solvent for desulfurization of liquid fuel. Separation and Purification Technology, 2015, 155, 101-109.	3.9	36
95	Rebuttal to "Questionable Green Ionic Liquid: Comment on â€ [~] Extractive Desulfurization of Liquid Fuels by Energy Efficient Green Thiazolium based Ionic Liquids'― Industrial & Engineering Chemistry Research, 2015, 54, 2260-2260.	1.8	4
96	Extractive Separation of Benzylformic Acid with Phosphoric Acid Tributyl Ester in CCl4, Decanol, Kerosene, Toluene, and Xylene at 298 K. Journal of Chemical & Engineering Data, 2015, 60, 1014-1022.	1.0	16
97	FeCl3 Based Imidazolium Ionic Liquids as Novel Solvents for Extractive–Oxidative Desulfurization of Liquid Fuels. Journal of Solution Chemistry, 2015, 44, 652-668.	0.6	10
98	Relative basicity approach for separation of \hat{I} ±-toluic acid with triglycerides of fatty acids by reactive extraction. Journal of Industrial and Engineering Chemistry, 2015, 22, 240-247.	2.9	14
99	Effect of sonication time on enhancement of effective thermal conductivity of nano TiO ₂ –water, ethylene glycol, and paraffin oil nanofluids and models comparisons. Journal of Experimental Nanoscience, 2015, 10, 310-322.	1.3	109
100	Investigation of Solar Drying of Ginger (<i>Zingiber officinale</i>): Emprical Modelling, Drying Characteristics, and Quality Study. Chinese Journal of Engineering, 2014, 2014, 1-7.	1.0	34
101	Enhancement of Esterification of Propionic Acid with Isopropyl Alcohol by Pervaporation Reactor. Journal of Chemistry, 2014, 2014, 1-4.	0.9	10
102	Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel. Fuel Processing Technology, 2014, 123, 1-10.	3.7	77
103	Heat transfer study on concentric tube heat exchanger using TiO2–water based nanofluid. International Communications in Heat and Mass Transfer, 2014, 57, 163-169.	2.9	87
104	Extractive Desulfurization of Liquid Fuels by Energy Efficient Green Thiazolium based Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 19845-19854.	1.8	46
105	Adsorptive separation of adipic acid from aqueous solutions by perlite or its composites by manganese or copper. Membrane Water Treatment, 2014, 5, 295-304.	0.5	2
106	Intensification of Esterification Reaction of Lactic Acid with Iso-propanol using Pervaporation Reactor. Procedia Engineering, 2013, 51, 456-460.	1.2	16
107	Study on concentric tube heat exchanger heat transfer performance using Al2O3 – water based nanofluids. International Communications in Heat and Mass Transfer, 2013, 49, 60-68.	2.9	75
108	Thermo – Physical Characterization of Paraffin based Fe3O4 Nanofluids. Procedia Engineering, 2013, 51, 342-346.	1.2	53

#	Article	IF	CITATIONS
109	Deep Removal of Sulfur from Model Liquid Fuels using 1-Butyl-3-Methylimidazolium Chloride. Procedia Engineering, 2013, 51, 416-422.	1.2	27
110	Reactive Extraction of Phenylacetic Acid with Tri- <i>n</i> -butyl Phosphate in Benzene, Hexanol, and Rice Bran Oil at 298 K. Journal of Chemical & Engineering Data, 2013, 58, 3240-3248.	1.0	47
111	Ionic Liquids: - The Novel Solvent for Removal of Dibenzothiophene from Liquid Fuel. Procedia Engineering, 2013, 51, 314-317.	1.2	21
112	Water to Nanofluids Heat Transfer in Concentric Tube Heat Exchanger: Experimental Study. Procedia Engineering, 2013, 51, 318-323.	1.2	67
113	Reactive extraction of picolinic and nicotinic acid by natural non-toxic solvent. Separation and Purification Technology, 2013, 120, 296-303.	3.9	56
114	Enhancement of Esterification Reaction by Pervaporation Reactor: An Intensifying Approach. Procedia Engineering, 2013, 51, 330-334.	1.2	18
115	Nonisothermal Mathematical Model for Performance Evaluation of Passive Direct Methanol Fuel Cells. Journal of Energy Engineering - ASCE, 2013, 139, 266-274.	1.0	9
116	Multi-objective optimization of indoor air quality control and energy consumption minimization in a subway ventilation system. Energy and Buildings, 2013, 66, 553-561.	3.1	84
117	Determination of key sensor locations for non-point pollutant sources management in sewer network. Korean Journal of Chemical Engineering, 2013, 30, 20-26.	1.2	5
118	Feasibility of red mud neutralization with seawater using Taguchi's methodology. International Journal of Environmental Science and Technology, 2013, 10, 305-314.	1.8	49
119	Removal of fluoride from aqueous solution: status and techniques. Desalination and Water Treatment, 2013, 51, 3233-3247.	1.0	60
120	Adsorption of lead from aqueous solution onto coir-pith activated carbon. Desalination and Water Treatment, 2013, 51, 2529-2535.	1.0	18
121	Periodic Local Multi-way Analysis and Monitoring of Indoor Air Quality in a Subway System Considering the Weekly Effect. Indoor and Built Environment, 2013, 22, 77-93.	1.5	14
122	Effect of Ethyl Oleate Pretreatment on Drying of Ginger: Characteristics and Mathematical Modelling. Journal of Chemistry, 2013, 2013, 1-6.	0.9	18
123	An Alternative to Clay in Building Materials: Red Mud Sintering Using Fly Ash via Taguchi's Methodology. Advances in Materials Science and Engineering, 2013, 2013, 1-7.	1.0	18
124	Sequestration of carbon dioxide in red mud. Desalination and Water Treatment, 2013, 51, 2185-2192.	1.0	15
125	Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel. Scientific World Journal, The, 2013, 2013, 1-9.	0.8	93
126	Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids. Journal of Energy, 2013, 2013, 1-4.	1.4	30

8

#	Article	IF	CITATIONS
127	Multistage Extractive Desulfurization of Liquid Fuel by Ionic Liquids. I-manager's Journal on Mechanical Engineering, 2013, 3, 10-15.	0.4	1
128	Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology. Waste Management and Research, 2012, 30, 922-930.	2.2	18
129	Comparative Study on Reactive Extraction of Picolinic Acid with Six Different Extractants (Phosphoric and Aminic) in Two Different Diluents (Benzene and Decan-1-ol). Separation Science and Technology, 2012, 47, 997-1005.	1.3	10
130	Design of experiments for Malachite Green dye removal from wastewater using thermolysis – coagulation–flocculation. Desalination and Water Treatment, 2012, 40, 260-271.	1.0	41
131	Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 2012, 39, 665-669.	2.9	135
132	Status of adsorptive removal of dye from textile industry effluent. Desalination and Water Treatment, 2012, 50, 226-244.	1.0	66
133	Investigations of biocompatible systems for reactive extraction of propionic acid using aminic extractants (TOA and Aliquat 336). Biotechnology and Bioprocess Engineering, 2012, 17, 1252-1260.	1.4	14
134	Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents: Part 1—Equilibrium Studies from Aqueous Solutions. Applied Biochemistry and Biotechnology, 2012, 167, 197-213.	1.4	51
135	Reactive Extraction: An Intensifying Approach for Carboxylic Acid Separation. International Journal of Chemical Engineering and Applications (IJCEA), 2012, , 249-255.	0.3	26
136	Modelling of Passive Direct Methanol Fuel Cell for Performance Evaluation. I-manager's Journal on Future Engineering and Technology, 2012, 7, 44-49.	0.3	0
137	Low Sulfur Liquid Fuel By Deep Desulfurization Using Ionic Liquid. I-manager's Journal on Future Engineering and Technology, 2012, 8, 1-5.	0.3	1
138	Reactive Extraction of Caproic Acid Using Tri-n-butyl Phosphate in Hexanol, Octanol, and Decanol. Journal of Chemical & Engineering Data, 2011, 56, 288-297.	1.0	48
139	Fenton oxidation of carpet dyeing wastewater for removal of COD and color. Desalination and Water Treatment, 2011, 28, 260-264.	1.0	15
140	Reactive Extraction of Itaconic Acid Using Quaternary Amine Aliquat 336 in Ethyl Acetate, Toluene, Hexane, and Kerosene. Industrial & Engineering Chemistry Research, 2011, 50, 1003-1011.	1.8	68
141	Reactive Extraction of Benzoic Acid and Pyridine-3-Carboxylic Acid Using Organophosphoric and Aminic Extractant Dissolved in Binary Diluent Mixtures. Journal of Chemical & Engineering Data, 2011, 56, 3367-3375.	1.0	28
142	Equilibrium for the Reactive Extraction of Caproic Acid Using Tri- <i>n</i> -butyl Phosphate in Methyl Isobutyl Ketone and Xylene. Journal of Chemical & Engineering Data, 2011, 56, 3318-3322.	1.0	36
143	Natural Nontoxic Solvents for Recovery of Picolinic Acid by Reactive Extraction. Industrial & Engineering Chemistry Research, 2011, 50, 13526-13537.	1.8	49
144	Removal of lead, zinc and iron by coagulation–flocculation. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 809-815.	2.7	133

#	Article	IF	CITATIONS
145	Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. Journal of Chemical Technology and Biotechnology, 2011, 86, 319-323.	1.6	67
146	Biomass Residue Briquetting and Characterization. Journal of Energy Engineering - ASCE, 2011, 137, 108-114.	1.0	39
147	Equilibrium Study for Reactive Extraction of Caproic Acid in Mibk and Xylene. Engineering, 2011, 03, 829-835.	0.4	19
148	Adsorption of Cadmium Ions from Aqueous Solution Using Granular Activated Carbon and Activated Clay. Clean - Soil, Air, Water, 2010, 38, 649-656.	0.7	31
149	Back extraction of propionic acid from loaded organic phase. Chemical Engineering Science, 2010, 65, 2751-2757.	1.9	64
150	Extraction of Caproic Acid Using Tri- <i>n</i> -butyl Phosphate in Benzene and Toluene at 301 K. Journal of Chemical & Engineering Data, 2010, 55, 4121-4125.	1.0	41
151	Comparative Study of the Mechanical and Thermal Properties of Polyamide-66 Filled with Commercial and Nano-Mg(OH)2Particles. Polymer-Plastics Technology and Engineering, 2010, 49, 474-480.	1.9	29
152	Performance Study of Pervaporation Reactor (PVR) for Esterification of Acetic Acid with Ethanol. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	1
153	REACTIVE EXTRACTION OF PROPIONIC ACID USING TRI-n-OCTYLAMINE. Chemical Engineering Communications, 2009, 197, 606-626.	1.5	52
154	Recovery of propionic acid by reactive extraction - 1. Equilibrium, effect of pH and temperature, water coextraction. Desalination and Water Treatment, 2009, 3, 91-98.	1.0	20
155	Equilibrium and Kinetics of Reactive Extraction of Propionic Acid Using Aliquat 336 and Tri-n-Butyl Phosphate in n-Hexanol. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	5
156	Extraction of propionic acid from model solutions: Effect of pH, salts, substrate, and temperature. AICHE Journal, 2009, 55, 1705-1711.	1.8	28
157	Adsorption of Selenium Using Bagasse Fly Ash. Clean - Soil, Air, Water, 2009, 37, 534-543.	0.7	47
158	Removal of Selenium by Adsorption onto Granular Activated Carbon (GAC) and Powdered Activated Carbon (PAC). Clean - Soil, Air, Water, 2009, 37, 872-883.	0.7	60
159	Reactive extraction of propionic acid using triâ€nâ€octylamine, triâ€nâ€butyl phosphate and aliquat 336 in sunflower oil as diluent. Journal of Chemical Technology and Biotechnology, 2009, 84, 484-489.	1.6	49
160	Recovery of propionic acid from aqueous phase by reactive extraction using quarternary amine (Aliquat 336) in various diluents. Chemical Engineering Journal, 2009, 152, 95-102.	6.6	58
161	Esterification of lactic acid with ethanol in a pervaporation reactor: modeling and performance study. Desalination, 2009, 243, 305-313.	4.0	43
162	Recovery of propionic acid from an aqueous stream by reactive extraction: effect of diluents. Desalination, 2009, 244, 12-23.	4.0	48

#	Article	IF	CITATIONS
163	Batch adsorption of zinc on tea factory waste. Desalination, 2009, 244, 66-71.	4.0	98
164	Effect of binary extractants and modifier–diluents systems on equilbria of propionic acid extraction. Fluid Phase Equilibria, 2009, 275, 21-26.	1.4	50
165	Extraction of Acrylic, Propionic, and Butyric Acid Using Aliquat 336 in Oleyl Alcohol: Equilibria and Effect of Temperature. Industrial & Engineering Chemistry Research, 2009, 48, 888-893.	1.8	78
166	Reactive Extraction of Acrylic Acid Using Tri- <i>n</i> -butyl Phosphate in Different Diluents. Journal of Chemical & Engineering Data, 2009, 54, 1782-1786.	1.0	55
167	Reactive Extraction of Levulinic Acid by Amberlite LA-2 Extractant. Journal of Chemical & Engineering Data, 2009, 54, 712-718.	1.0	60
168	Thermodynamics of Reactive Extraction of Propionic Acid. I-manager's Journal on Future Engineering and Technology, 2009, 4, 41-49.	0.3	1
169	Oil field effluent water treatment for safe disposal by electroflotation. Chemical Engineering Journal, 2008, 137, 503-509.	6.6	121
170	Intensification of Nicotinic Acid Separation using Organophosphorous Solvating Extractants by Reactive Extraction. Chemical Engineering and Technology, 2008, 31, 1584-1590.	0.9	57
171	Adsorption of Zinc using Tea Factory Waste: Kinetics, Equilibrium and Thermodynamics. Clean - Soil, Air, Water, 2008, 36, 320-329.	0.7	55
172	Extraction of propionic acid with tri-n-octyl amine in different diluents. Separation and Purification Technology, 2008, 63, 179-183.	3.9	87
173	Extraction of Propionic Acid Using Different Extractants (Tri- <i>n</i> -butylphosphate,) Tj ETQq1 1 0.784314 rgBT 6192-6196.	/Overlock 1.8	10 Tf 50 84 81
174	Equilibrium Studies for Extraction of Propionic Acid Using Tri- <i>n</i> -Butyl Phosphate in Different Solvents. Journal of Chemical & Engineering Data, 2008, 53, 1424-1430.	1.0	79
175	Pervaporation Reactor for Esterification of Acetic Acid with n-Butanol: Modeling and Simulation. International Journal of Chemical Reactor Engineering, 2008, 6, .	0.6	1
176	CFD Modelling and Simulation of Jet Mixed Tanks. Engineering Applications of Computational Fluid Mechanics, 2008, 2, 155-171.	1.5	32
177	Characterization of Tea Factory Waste as an Adsorbent. I-manager's Journal on Future Engineering and Technology, 2008, 3, 49-55.	0.3	1
178	Modeling of Pervaporation Reactor for Benzyl Alcohol Acetylation. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	3
179	Modeling and Simulation of Catalytic Distillation Column for Esterification of Acetic Acid with Methanol. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	4
180	Adsorption Mechanism for the Adsorption of Heavy Metals Using Tea Waste as an Adsorbent. I-manager's Journal on Future Engineering and Technology, 2007, 3, 41-46.	0.3	6

#	Article	IF	CITATIONS
181	Intensification of conversion of glucose to lactic acid: equilibria and kinetics for back extraction of lactic acid using trimethylamine. Chemical Engineering Science, 2004, 59, 2315-2320.	1.9	42
182	Fermentation of Glucose to Lactic Acid Coupled with Reactive Extraction:  A Review. Industrial & Engineering Chemistry Research, 2004, 43, 5969-5982.	1.8	222
183	Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction. Chemical Engineering Science, 2003, 58, 3385-3393.	1.9	107
184	Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. Journal of Biotechnology, 2002, 97, 59-68.	1.9	152
185	Equilibria and kinetics for reactive extraction of lactic acid using Alamine 336 in decanol. Journal of Chemical Technology and Biotechnology, 2002, 77, 1068-1075.	1.6	108
186	Intensification of enzymatic hydrolysis of penicillin G: Part 1. Equilibria and kinetics of extraction of phenyl acetic acid by Alamine 336. Chemical Engineering Science, 2002, 57, 1979-1984.	1.9	56
187	Biobutanol: Towards Sustainable Green Environment. SSRN Electronic Journal, 0, , .	0.4	3
188	Separation of Protocatechuic Acid: Emphasizing on Intensifying Approaches. SSRN Electronic Journal, 0, , .	0.4	0
189	Design of experiments for Malachite Green dye removal from wastewater using thermolysis - coagulation-flocculation. , 0, 40, 260-271.		2