Atul Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 2021, 374, 621-625.	6.0	137
2	Low Amplified Spontaneous Emission Threshold and Efficient Electroluminescence from a Carbazole Derivatized Excited-State Intramolecular Proton Transfer Dye. ACS Photonics, 2018, 5, 4447-4455.	3.2	47
3	Design Strategy for Robust Organic Semiconductor Laser Dyes. , 2020, 2, 161-167.		47
4	Exciton–Exciton Annihilation in Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2020, 30, 2000580.	7.8	45
5	Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes. Nature Communications, 2022, 13, 254.	5.8	42
6	Low-temperature solution-processed flexible organic solar cells with PFN/AgNWs cathode. Nano Energy, 2015, 16, 122-129.	8.2	36
7	Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nature Communications, 2020, 11, 5623.	5.8	31
8	Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing. Nature Communications, 2020, 11, 4310.	5.8	31
9	Light Amplification and Efficient Electroluminescence from a Solutionâ€Processable Diketopyrrolopyrrole Derivative via Tripletâ€toâ€Singlet Upconversion. Advanced Functional Materials, 2021, 31, 2009817.	7.8	30
10	Deepâ€Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bayâ€Annulated Indigo Derivatives. Advanced Optical Materials, 2020, 8, 1901350.	3.6	26
11	Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors. Advanced Optical Materials, 2020, 8, 2001234.	3.6	23
12	Highâ€5peed OLEDs and Areaâ€Emitting Lightâ€Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer. Advanced Optical Materials, 2018, 6, 1800768.	3.6	19
13	High-performance solution-processed red hyperfluorescent OLEDs based on cibalackrot. Journal of Materials Chemistry C, 2022, 10, 4767-4774.	2.7	19
14	Solution Processable Deep-Red Phosphorescent Pt(II) Complex: Direct Conversion from Its Pt(IV) Species via a Base-Promoted Reduction. ACS Applied Electronic Materials, 2019, 1, 1304-1313.	2.0	16
15	White Organic Light-Emitting Diodes from Single Emissive Layers: Combining Exciplex Emission with Electromer Emission. Journal of Physical Chemistry C, 2021, 125, 22809-22816.	1.5	16
16	Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Asymmetric Phenoxazine-Quinoline (D2–A) Conjugates and Dual Electroluminescence. Journal of Physical Chemistry C, 2022, 126, 5649-5657.	1.5	15
17	Low Amplified Spontaneous Emission and Lasing Thresholds from Hybrids of Fluorenes and Vinylphenylcarbazole. Advanced Optical Materials, 2020, 8, 2000784.	3.6	14
18	Controlling triplet–triplet upconversion and singlet-triplet annihilation in organic light-emitting diodes for injection lasing. Communications Materials, 2022, 3, .	2.9	13

Atul Shukla

#	Article	IF	CITATIONS
19	Low Threshold Room Temperature Polariton Lasing from Fluoreneâ€Based Oligomers. Laser and Photonics Reviews, 2021, 15, 2100028.	4.4	12
20	Tunable Lightâ€Emission Properties of Solutionâ€Processable Nâ€Heterocyclic Carbene Cyclometalated Gold(III) Complexes for Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2021, 27, 7265-7274.	1.7	10
21	Reduced Singlet–Triplet Annihilation for Low Threshold Amplified Spontaneous Emission from a Blue Polyfluorene Electroluminescent Organic Semiconductor. Journal of Physical Chemistry C, 2022, 126, 9069-9075.	1.5	5
22	Impact of Polymer Molecular Weight on Polymeric Photodiodes. Advanced Optical Materials, 2022, 10, 2101890.	3.6	4
23	Low Light Amplification Threshold and Reduced Efficiency Rollâ€Off in Thick Emissive Layer OLEDs from a Diketopyrrolopyrrole Derivative. Macromolecular Rapid Communications, 2022, 43, e2200115.	2.0	4
24	Cibalackrot Dendrimers for Hyperfluorescent Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2022, 43, e2200118.	2.0	4
25	Structural Integration of Carbazole and Tetraphenylethylene: Ultrafast Excited tate Relaxation Dynamics and Efficient Electroluminescence. Advanced Photonics Research, 2021, 2, 2000144.	1.7	2
26	Fluorenone and triphenylamine based donor–acceptor–donor (D–A–D) for solution-processed organic light-emitting diodes. Flexible and Printed Electronics, 2022, 7, 025009.	1.5	1
27	Polymer Light Emitting Devices: High-Speed OLEDs and Area-Emitting Light-Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer (Advanced Optical Materials 21/2018). Advanced Optical Materials, 2018, 6, 1870084.	3.6	0
28	Organic Semiconductor Lasers: Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors (Advanced Optical Materials) Tj ETQq0 () 0 rg8∂ /O\	verl o ck 10 Tf :
	Organic Laser Dves: Deepâ€Red Lasing and Amplified Spontaneous Emission from Nature Inspired		