Sanggeun Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174437/publications.pdf

Version: 2024-02-01

933447 610901 50 625 10 24 citations g-index h-index papers 50 50 50 849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bodyâ€Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices. Advanced Materials, 2016, 28, 748-756.	21.0	129
2	A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS. IEEE Journal of Solid-State Circuits, 2008, 43, 2660-2673.	5.4	76
3	A 15–40 GHz CMOS True-Time Delay Circuit for UWB Multi-Antenna Systems. IEEE Microwave and Wireless Components Letters, 2013, 23, 149-151.	3.2	54
4	H-Band Power Amplifier Integrated Circuits Using 250-nm InP HBT Technology. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 215-222.	3.1	44
5	A Fully-Integrated 40–222 GHz InP HBT Distributed Amplifier. IEEE Microwave and Wireless Components Letters, 2014, 24, 460-462.	3.2	39
6	A 220–320-GHz Vector-Sum Phase Shifter Using Single Gilbert-Cell Structure With Lossy Output Matching. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 256-265.	4.6	31
7	Compact Two-Way and Four-Way Power Dividers Using Multi-Conductor Coupled Lines. IEEE Microwave and Wireless Components Letters, 2011, 21, 130-132.	3.2	30
8	Design and Performance Analysis of THz Wireless Communication Systems for Chip-to-Chip and Personal Area Networks Applications. IEEE Journal on Selected Areas in Communications, 2021, 39, 1785-1796.	14.0	23
9	A 248–262 GHz InP HBT VCO with Interesting Tuning Behavior. IEEE Microwave and Wireless Components Letters, 2014, 24, 560-562.	3.2	20
10	A New Compact CMOS Distributed Digital Attenuator. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4631-4640.	4.6	20
11	Wideband harmonicâ€tuned CMOS power amplifier with 19.5ÂdBm output power and 22.6% PAE over entire Xâ€band. Electronics Letters, 2015, 51, 703-705.	1.0	10
12	A WR-3 Band Fundamental Voltage-Controlled Oscillator With a Wide Frequency Tuning Range and High Output Power. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 2759-2768.	4.6	10
13	A Ku-Band GaAs Multifunction Transmitter and Receiver Chipset. Electronics (Switzerland), 2020, 9, 1327.	3.1	10
14	W- and G-Band GaN Voltage-Controlled Oscillators With High Output Power and High Efficiency. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3908-3916.	4.6	10
15	A D-Band Multiplier-Based OOK Transceiver With Supplementary Transistor Modeling in 65-nm Bulk CMOS Technology. IEEE Access, 2019, 7, 7783-7793.	4.2	8
16	A 20–30 GHz divideâ€byâ€3 ringâ€oscillatorâ€based injection locked frequency divider with a wide locking range. Microwave and Optical Technology Letters, 2011, 53, 839-841.	1.4	7
17	A full X-band CMOS amplifier with wideband class-E harmonic matching. Microwave and Optical Technology Letters, 2015, 57, 645-649.	1.4	7
18	108–316- and 220–290-GHz Ultrabroadband Distributed Frequency Doublers. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1000-1011.	4.6	7

#	Article	lF	CITATIONS
19	A 300-GHz High-Power High-Efficiency Voltage-Controlled Oscillator With Low Power Variation. IEEE Microwave and Wireless Components Letters, 2020, 30, 496-499.	3.2	7
20	A \$Q\$-Band Injection-Locked Frequency Divider With Inductive Feedback for a Locking Range Enhancement. IEEE Microwave and Wireless Components Letters, 2011, 21, 317-319.	3.2	6
21	An overview of integrated THz electronics for communication applications. , 2011, , .		6
22	Compact three-way planar power divider using five-conductor coupled line. IEICE Electronics Express, 2011, 8, 1387-1392.	0.8	6
23	A 220–320 GHz single-pole single-throw switch. , 2016, , .		6
24	WR-1.5 High-Power Frequency Doubler in 130-nm InP HBT Technology. IEEE Microwave and Wireless Components Letters, 2020, 30, 504-507.	3.2	5
25	A GaAs p-HEMT Distributed Drain Mixer With Low LO Drive Power, High Isolation, and Zero Power Consumption. IEEE Access, 2021, 9, 158420-158425.	4.2	5
26	Tunable impedance transformer using multiconductor coupled lines. Microwave and Optical Technology Letters, 2012, 54, 851-853.	1.4	4
27	K- and Ka-band miniature CMOS balun with a single spiral coupled structure. Journal of Electromagnetic Waves and Applications, 2013, 27, 1910-1918.	1.6	4
28	A CMOS W-Band Amplifier with Tunable Neutralization Using a Cross-Coupled MOS–varactor Pair. Electronics (Switzerland), 2019, 8, 537.	3.1	4
29	A New mm-Wave Multiple-Band Single-Pole Multiple-Throw Switch With Variable Transmission Lines. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2551-2561.	4.6	4
30	Variation in RF Performance of MOSFETs Due to Substrate Digital Noise Coupling. IEEE Microwave and Wireless Components Letters, 2010, 20, 384-386.	3.2	3
31	Recent progress in terahertz monolithic integrated circuits. , 2012, , .		3
32	A full Dâ€band CMOS envelope detector for highâ€speed OOK wireless communication. Microwave and Optical Technology Letters, 2018, 60, 1619-1622.	1.4	3
33	Multi-Layer Dielectric Cavity Antennas with Extended Aperture Height. IEICE Transactions on Communications, 2011, E94-B, 573-575.	0.7	3
34	A Transformer-Matched Millimeter-Wave CMOS Power Amplifier. Journal of Semiconductor Technology and Science, 2016, 16, 687-694.	0.4	3
35	A Compact 275–320-GHz Reflection-Type Phase Shifter. IEEE Microwave and Wireless Components Letters, 2022, 32, 991-994.	3.2	3
36	An 18–32 GHz ultra wideband low-noise amplifier with a low variation of group delay., 2012,,.		2

#	Article	IF	Citations
37	A 7.5-GHz uniplanar 180° hybrid coupler on flexible polyimide substrate. Journal of Electromagnetic Waves and Applications, 2017, 31, 38-46.	1.6	2
38	\$W\$ -Band Injection-Locked Frequency Octupler Using a Push–Push Output Structure. IEEE Microwave and Wireless Components Letters, 2019, 29, 822-825.	3.2	2
39	Mmâ€wave singleâ€pole singleâ€throw mâ€HEMT switch with low loss and high linearity. Electronics Letters, 2020, 56, 719-721.	1.0	2
40	Analysis and Demonstration of Mm-Wave Distributed Amplifiers With Modified Artificial Transmission Line Model. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 415-425.	3.1	2
41	A WIDEBAND CMOS CASCADED VARIABLE GAIN AMPLIFIER USING UNEQUALLY DISTRIBUTED GAIN CONTROL FOR DVB-S.2 RECEIVER. Journal of Circuits, Systems and Computers, 2013, 22, 1340008.	1.5	1
42	Compact MMâ€wave CMOS distributed amplifier using seriesâ€peaking line and Mâ€derived section. Microwave and Optical Technology Letters, 2015, 57, 814-817.	1.4	1
43	H-band down-conversion and up-conversion mixers with wide IF bandwidth. , 2016, , .		1
44	A WR-3 Band Distributed Frequency Doubler with a Differential Quasi-cascode Structure., 2019,,.		1
45	An mm-Wave Multi-Mode Asymmetric Power Amplifier With Back-off Efficiency Enhancement. IEEE Access, 2021, 9, 117282-117291.	4.2	1
46	A high-power solid-state RF source driven by a doubly-differential signal. Microwave and Optical Technology Letters, 2010, 52, 1489-1492.	1.4	0
47	Highly-integrable K-band power dividers based on digital CMOS technology. IEICE Electronics Express, 2011, 8, 114-120.	0.8	0
48	WR-3 Band Integrated Circuits in InP HBT Technology. , 2019, , .		0
49	Design of Metal-Oxide-Metal Capacitors in a 65-nm CMOS Process. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2019, 30, 846-849.	0.3	0
50	Compact 232–250-GHz Traveling-Wave Frequency Doubler With Peak Output Power of 5.2 dBm and Efficiency of 2.9%. IEEE Microwave and Wireless Components Letters, 2022, 32, 1055-1058.	3.2	O