
Ines Ezcurra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11743660/publications.pdf Version: 2024-02-01

INES EZCUDDA

#	Article	IF	CITATIONS
1	The function of two type II metacaspases in woody tissues of <i>Populus</i> trees. New Phytologist, 2018, 217, 1551-1565.	7.3	30
2	Downregulation of <scp>RWA</scp> genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytologist, 2017, 214, 1491-1505.	7.3	50
3	Overexpression of PaNACO3, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biology, 2017, 17, 6.	3.6	45
4	A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans. International Journal of Molecular Sciences, 2016, 17, 1031.	4.1	5
5	WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects. Frontiers in Plant Science, 2015, 6, 1112.	3.6	23
6	Biochemical characterization of the novel endo -Î ² -mannanase At Man5-2 from Arabidopsis thaliana. Plant Science, 2015, 241, 151-163.	3.6	11
7	<i>Populus <scp>GT</scp>43</i> family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. Plant Biotechnology Journal, 2015, 13, 26-37.	8.3	51
8	Suppression of xylan endotransglycosylase <i>PtxtXyn10A</i> affects cellulose microfibril angle in secondary wall in aspen wood. New Phytologist, 2015, 205, 666-681.	7.3	66
9	Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A. Journal of Experimental Botany, 2012, 63, 6045-6056.	4.8	8
10	Group III-A <i>XTH</i> Genes of Arabidopsis Encode Predominant Xyloglucan Endohydrolases That Are Dispensable for Normal Growth Â. Plant Physiology, 2012, 161, 440-454.	4.8	63
11	An AC-type element mediates transactivation of secondary cell wall carbohydrate-active enzymes by PttMYB021, the PopulusMYB46 orthologue. BMC Proceedings, 2011, 5, .	1.6	1
12	Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris. Plant Biotechnology, 2010, 27, 251-258.	1.0	16
13	Biochemical characterization of family 43 glycosyltransferases in the Populus xylem: challenges and prospects. Plant Biotechnology, 2010, 27, 283-288.	1.0	1
14	Conserved CA-rich motifs in gene promoters of Pt×tMYB021-responsive secondary cell wall carbohydrate-active enzymes in Populus. Biochemical and Biophysical Research Communications, 2010, 394, 848-853.	2.1	23
15	The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth. New Phytologist, 2009, 184, 552-565.	7.3	37
16	Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity. Fungal Genetics and Biology, 2009, 46, 759-767.	2.1	27
17	Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells. Plant Journal, 2005, 44, 1-15.	5.7	24
18	LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growthin vitro. Plant Journal, 2004, 39, 343-353.	5.7	139

Ines Ezcurra

#	Article	IF	CITATIONS
19	A Cysteine-Rich Extracellular Protein, LAT52, Interacts with the Extracellular Domain of the Pollen Receptor Kinase LePRK2[W]. Plant Cell, 2002, 14, 2277-2287.	6.6	185
20	New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinases show overlapping but distinct localization patterns on pollen tubes. Plant Molecular Biology, 2002, 50, 1-16.	3.9	65
21	Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant Journal, 2000, 21, 401-408.	5.7	197
22	Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant Journal, 2000, 24, 57-66.	5.7	155
23	Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Molecular Biology, 1999, 40, 699-709.	3.9	154
24	Seed-specific regulation of the napin promoter in Brassica napus. Journal of Plant Physiology, 1998, 152, 595-599.	3.5	16
25	Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Molecular Biology, 1996, 32, 1019-1027.	3.9	142
26	Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta, 1996, 199, 515-9.	3.2	151
27	Distinct sequence elements in a napin promoter interact in vitro with DNA-binding proteins from Brassica napus. Physiologia Plantarum, 1991, 82, 205-212.	5.2	11