Apolinar Maya-Mendoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death and Differentiation, 2022, 29, 972-982.	5.0	47
2	Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death and Differentiation, 2022, 29, 1639-1653.	5.0	9
3	The Contribution of Lysosomes to DNA Replication. Cells, 2021, 10, 1068.	1.8	5
4	AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature, 2021, 592, 799-803.	13.7	78
5	Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discovery, 2021, 11, 2456-2473.	7.7	74
6	The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nature Communications, 2021, 12, 3937.	5.8	20
7	A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Molecular Cell, 2021, 81, 4907-4923.e8.	4.5	28
8	Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death and Differentiation, 2020, 27, 1134-1153.	5.0	57
9	Super-sonic speed of DNA synthesis in medulloblastoma. Nature Cancer, 2020, 1, 758-760.	5.7	2
10	Cancer cell stemness, responses to experimental genotoxic treatments, cytomegalovirus protein expression and DNA replication stress in pediatric medulloblastomas. Cell Cycle, 2020, 19, 727-741.	1.3	5
11	Regulation of replication fork speed: Mechanisms and impact on genomic stability. DNA Repair, 2019, 81, 102654.	1.3	21
12	Differential Activity of ATR and WEE1 Inhibitors in a Highly Sensitive Subpopulation of DLBCL Linked to Replication Stress. Cancer Research, 2019, 79, 3762-3775.	0.4	56
13	High speed of fork progression induces DNA replication stress and genomic instability. Nature, 2018, 559, 279-284.	13.7	374
14	SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Research, 2018, 46, 9484-9495.	6.5	39
15	Labeling DNA Replication Foci to Visualize Chromosome Territories In Vivo. Current Protocols in Cell Biology, 2017, 75, 22.21.1-22.21.16.	2.3	2
16	Replication stress, <scp>DNA</scp> damage signalling, and cytomegalovirus infection in human medulloblastomas. Molecular Oncology, 2017, 11, 945-964.	2.1	11
17	Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states. Nature Communications, 2016, 7, 12057.	5.8	80
18	BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nature Communications, 2016, 7, 13398.	5.8	105

Apolinar Maya-Mendoza

#	Article	IF	CITATIONS
19	Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nature Cell Biology, 2016, 18, 777-789.	4.6	244
20	Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin. Cell Cycle, 2016, 15, 345-356.	1.3	23
21	TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. Journal of Cell Biology, 2016, 212, 281-288.	2.3	70
22	Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Molecular Oncology, 2015, 9, 601-616.	2.1	136
23	EdU induces DNA damage response and cell death in mESC in culture. Chromosome Research, 2013, 21, 87-100.	1.0	60
24	Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1524-1529.	3.3	43
25	Visualising chromosomal replication sites and replicons in mammalian cells. Methods, 2012, 57, 140-148.	1.9	23
26	MCM8- and MCM9-Deficient Mice Reveal Gametogenesis Defects and Genome Instability Due to Impaired Homologous Recombination. Molecular Cell, 2012, 47, 523-534.	4.5	191
27	Innate Structure of DNA Foci Restricts the Mixing of DNA from Different Chromosome Territories. PLoS ONE, 2011, 6, e27527.	1.1	11
28	Continued Stabilization of the Nuclear Higher-Order Structure of Post-Mitotic Neurons In Vivo. PLoS ONE, 2011, 6, e21360.	1.1	10
29	Cellular Microenvironment Influences the Ability of Mammary Epithelia to Undergo Cell Cycle. PLoS ONE, 2011, 6, e18144.	1.1	12
30	S-phase progression in mammalian cells: modelling the influence of nuclear organization. Chromosome Research, 2010, 18, 163-178.	1.0	19
31	B-Myb is Critical for Proper DNA Duplication During an Unperturbed S Phase in Mouse Embryonic Stem Cells Â. Stem Cells, 2010, 28, 1751-1759.	1.4	50
32	S Phase Progression in Human Cells Is Dictated by the Genetic Continuity of DNA Foci. PLoS Genetics, 2010, 6, e1000900.	1.5	43
33	Mechanisms regulating S phase progression in mammalian cells. Frontiers in Bioscience - Landmark, 2009, Volume, 4199.	3.0	11
34	Lamin B1 maintains the functional plasticity of nucleoli. Journal of Cell Science, 2009, 122, 1551-1562.	1.2	78
35	Replication timing: Findings from fibers. Cell Cycle, 2009, 8, 3073-3077.	1.3	2
36	Reduced Expression of Lamin A/C Results in Modified Cell Signaling and Metabolism Coupled with Changes in Expression of Structural Proteins. Journal of Proteome Research, 2009, 8, 5196-5211.	1.8	15

Apolinar Maya-Mendoza

#	Article	IF	CITATIONS
37	Interaction with Checkpoint Kinase 1 Modulates the Recruitment of Nucleophosmin to Chromatin. Journal of Proteome Research, 2009, 8, 4693-4704.	1.8	7
38	The integrity of a lamin-B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. Journal of Cell Science, 2008, 121, 1014-1024.	1.2	100
39	Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO Journal, 2007, 26, 2719-2731.	3.5	229
40	Chk1 Requirement for High Global Rates of Replication Fork Progression during Normal Vertebrate S Phase. Molecular and Cellular Biology, 2006, 26, 3319-3326.	1.1	166
41	Natural ageing in the rat liver correlates with progressive stabilisation of DNA–nuclear matrix interactions and withdrawal of genes from the nuclear substructure. Mechanisms of Ageing and Development, 2005, 126, 767-782.	2.2	23
42	A global but stable change in HeLa cell morphology induces reorganization of DNA structural loop domains within the cell nucleus. Journal of Cellular Biochemistry, 2005, 96, 79-88.	1.2	17
43	Gene positional changes relative to the nuclear substructure during carbon tetrachloride-induced hepatic fibrosis in rats. Journal of Cellular Biochemistry, 2004, 93, 1084-1098.	1.2	15
44	Positional mapping of specific DNA sequences relative to the nuclear substructure by direct polymerase chain reaction on nuclear matrix-bound templates. Analytical Biochemistry, 2003, 313, 196-207.	1.1	21
45	Gene positional changes relative to the nuclear substructure correlate with the proliferating status of hepatocytes during liver regeneration. Nucleic Acids Research, 2003, 31, 6168-6179.	6.5	23