Peter Atadja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11742978/publications.pdf

Version: 2024-02-01

30047 45285 10,616 90 54 90 citations h-index g-index papers 92 92 92 11147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of Histone Deacetylase 6 Acetylates and Disrupts the Chaperone Function of Heat Shock Protein 90. Journal of Biological Chemistry, 2005, 280, 26729-26734.	1.6	694
2	Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21360-21365.	3.3	501
3	Development of the pan-DAC inhibitor panobinostat (LBH589): Successes and challenges. Cancer Letters, 2009, 280, 233-241.	3.2	358
4	Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood, 2009, 114, 2733-2743.	0.6	336
5	Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood, 2005, 105, 1768-1776.	0.6	332
6	Aggresome induction by proteasome inhibitor bortezomib and α-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood, 2006, 108, 3441-3449.	0.6	328
7	Class II Histone Deacetylases Are Associated with VHL-Independent Regulation of Hypoxia-Inducible Factor 1α. Cancer Research, 2006, 66, 8814-8821.	0.4	292
8	Histone Deacetylase Inhibitor Panobinostat Induces Clinical Responses with Associated Alterations in Gene Expression Profiles in Cutaneous T-Cell Lymphoma. Clinical Cancer Research, 2008, 14, 4500-4510.	3.2	286
9	Targeting Tumor Angiogenesis with Histone Deacetylase Inhibitors: the Hydroxamic Acid Derivative LBH589. Clinical Cancer Research, 2006, 12, 634-642.	3.2	264
10	An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nature Chemical Biology, 2017, 13, 381-388.	3.9	259
11	Targeting MLL1 H3K4 Methyltransferase Activity in Mixed-Lineage Leukemia. Molecular Cell, 2014, 53, 247-261.	4.5	252
12	The Histone Deacetylase Inhibitor LBH589 Is a Potent Antimyeloma Agent that Overcomes Drug Resistance. Cancer Research, 2006, 66, 5781-5789.	0.4	233
13	The Histone Deacetylase Inhibitor NVP-LAQ824 Inhibits Angiogenesis and Has a Greater Antitumor Effect in Combination with the Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor PTK787/ZK222584. Cancer Research, 2004, 64, 6626-6634.	0.4	229
14	NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood, 2003, 102, 2615-2622.	0.6	220
15	Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Research, 2003, 63, 5126-35.	0.4	218
16	Cotreatment with Histone Deacetylase Inhibitor LAQ824 Enhances Apo-2L/Tumor Necrosis Factor-Related Apoptosis Inducing Ligand-Induced Death Inducing Signaling Complex Activity and Apoptosis of Human Acute Leukemia Cells. Cancer Research, 2004, 64, 2580-2589.	0.4	215
17	Role of Acetylation and Extracellular Location of Heat Shock Protein 90α in Tumor Cell Invasion. Cancer Research, 2008, 68, 4833-4842.	0.4	213
18	Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Molecular Cancer Therapeutics, 2003, 2, 971-84.	1.9	191

#	Article	IF	CITATIONS
19	HDAC6 inhibition enhances 17-AAG–mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood, 2008, 112, 1886-1893.	0.6	176
20	Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6841-6846.	3.3	167
21	Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood, 2009, 114, 5024-5033.	0.6	165
22	In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica, 2010, 95, 794-803.	1.7	144
23	Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biology and Therapy, 2007, 6, 64-69.	1.5	143
24	Inhibition of Histone Deacetylases Promotes Ubiquitin-Dependent Proteasomal Degradation of DNA Methyltransferase 1 in Human Breast Cancer Cells. Molecular Cancer Research, 2008, 6, 873-883.	1.5	143
25	Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl–expressing human leukemia cells. Blood, 2006, 108, 645-652.	0.6	142
26	Selective Growth Inhibition of Tumor Cells by a Novel Histone Deacetylase Inhibitor, NVP-LAQ824. Cancer Research, 2004, 64, 689-695.	0.4	141
27	Hydroxamic Acid Analogue Histone Deacetylase Inhibitors Attenuate Estrogen Receptor-α Levels and Transcriptional Activity: A Result of Hyperacetylation and Inhibition of Chaperone Function of Heat Shock Protein 90. Clinical Cancer Research, 2007, 13, 4882-4890.	3.2	138
28	The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Phâ ^{**} acute lymphoblastic leukemia cells. Blood, 2008, 111, 5093-5100.	0.6	134
29	Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53. Nature Communications, 2015, 6, 8651.	5.8	134
30	N-Hydroxy-3-phenyl-2-propenamides as Novel Inhibitors of Human Histone Deacetylase with in Vivo Antitumor Activity:  Discovery of (2E)-N-Hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). Journal of Medicinal Chemistry, 2003, 46, 4609-4624.	2.9	129
31	Superior Activity of the Combination of Histone Deacetylase Inhibitor LAQ824 and the FLT-3 Kinase Inhibitor PKC412 against Human Acute Myelogenous Leukemia Cells with Mutant FLT-3. Clinical Cancer Research, 2004, 10, 4991-4997.	3.2	128
32	Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor–dependent human lung cancer cells. Molecular Cancer Therapeutics, 2007, 6, 2515-2524.	1.9	117
33	Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Molecular Cancer Therapeutics, 2006, 5, 3096-3104.	1.9	115
34	Phase I Pharmacokinetic and Pharmacodynamic Study of LAQ824, a Hydroxamate Histone Deacetylase Inhibitor with a Heat Shock Protein-90 Inhibitory Profile, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2008, 14, 6663-6673.	3.2	115
35	Inhibitors of Human Histone Deacetylase:  Synthesis and Enzyme and Cellular Activity of Straight Chain Hydroxamates. Journal of Medicinal Chemistry, 2002, 45, 753-757.	2.9	112
36	The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood, 2009, 114, 380-393.	0.6	108

#	Article	IF	CITATIONS
37	Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood, 2014, 123, 1341-1352.	0.6	107
38	Combination Strategy Targeting the Hypoxia Inducible Factor- $1\hat{l}_{\pm}$ with Mammalian Target of Rapamycin and Histone Deacetylase Inhibitors. Clinical Cancer Research, 2008, 14, 3589-3597.	3.2	105
39	Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Molecular Cancer Therapeutics, 2008, 7, 3285-3297.	1.9	104
40	Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Molecular Cancer Therapeutics, 2005, 4, 1311-1319.	1.9	94
41	Combination of Pan-Histone Deacetylase Inhibitor and Autophagy Inhibitor Exerts Superior Efficacy against Triple-Negative Human Breast Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 973-983.	1.9	93
42	IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood, 2010, 115, 2430-2440.	0.6	88
43	Discovery of First-in-Class, Potent, and Orally Bioavailable Embryonic Ectoderm Development (EED) Inhibitor with Robust Anticancer Efficacy. Journal of Medicinal Chemistry, 2017, 60, 2215-2226.	2.9	86
44	Overexpression of Cyclin D1 Blocks Proliferation of Normal Diploid Fibroblasts. Experimental Cell Research, 1995, 217, 205-216.	1.2	84
45	Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biology and Therapy, 2009, 8, 939-950.	1.5	84
46	Polycomb Target Genes Are Silenced in Multiple Myeloma. PLoS ONE, 2010, 5, e11483.	1.1	81
47	Molecular and biologic characterization and drug sensitivity of pan-histone deacetylase inhibitor–resistant acute myeloid leukemia cells. Blood, 2008, 112, 2896-2905.	0.6	80
48	Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T ell lymphoma models: Defining molecular mechanisms of resistance. International Journal of Cancer, 2010, 127, 2199-2208.	2.3	79
49	Treatment with Panobinostat Induces Glucose-Regulated Protein 78 Acetylation and Endoplasmic Reticulum Stress in Breast Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 942-952.	1.9	76
50	Abrogation of MAPK and Akt Signaling by AEE788 Synergistically Potentiates Histone Deacetylase Inhibitor-Induced Apoptosis through Reactive Oxygen Species Generation. Clinical Cancer Research, 2007, 13, 1140-1148.	3.2	75
51	Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Molecular Cancer Therapeutics, 2007, 6, 70-81.	1.9	74
52	In vivo Biological Activity of the Histone Deacetylase Inhibitor LAQ824 Is detectable with 3′-Deoxy-3′-[18F]Fluorothymidine Positron Emission Tomography. Cancer Research, 2006, 66, 7621-7629.	0.4	68
53	Histone Deacetylase Inhibitors Activate NF-κB in Human Leukemia Cells through an ATM/NEMO-related Pathway. Journal of Biological Chemistry, 2010, 285, 10064-10077.	1.6	57
54	Structure of Human SMYD2 Protein Reveals the Basis of p53 Tumor Suppressor Methylation. Journal of Biological Chemistry, 2011, 286, 38725-38737.	1.6	55

#	Article	IF	CITATIONS
55	Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 4752-4772.	2.9	54
56	High Efficacy of Panobinostat Towards Human Gastrointestinal Stromal Tumors in a Xenograft Mouse Model. Clinical Cancer Research, 2009, 15, 4066-4076.	3.2	53
57	Cotreatment with BCL-2 antagonist sensitizes cutaneous T-cell lymphoma to lethal action of HDAC7-Nur77–based mechanism. Blood, 2009, 113, 4038-4048.	0.6	50
58	Role of CAAT/Enhancer Binding Protein Homologous Protein in Panobinostat-Mediated Potentiation of Bortezomib-Induced Lethal Endoplasmic Reticulum Stress in Mantle Cell Lymphoma Cells. Clinical Cancer Research, 2010, 16, 4742-4754.	3.2	49
59	Induction of cell cycle arrest and DNA damage by the HDAC inhibitor panobinostat (LBH589) and the lipid peroxidation end product 4-hydroxynonenal in prostate cancer cells. Free Radical Biology and Medicine, 2011, 50, 313-322.	1.3	49
60	Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica, 2004, 89, 419-26.	1.7	47
61	Epigenetic Silencing of the Tetraspanin CD9 during Disease Progression in Multiple Myeloma Cells and Correlation with Survival. Clinical Cancer Research, 2008, 14, 2918-2926.	3.2	46
62	The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. Journal of Pathology, 2009, 218, 467-477.	2.1	46
63	Pan-histone deacetylase inhibitor panobinostat depletes CXCR4 levels and signaling and exerts synergistic antimyeloid activity in combination with CXCR4 antagonists. Blood, 2010, 116, 5306-5315.	0.6	46
64	Superior efficacy of co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and pan-histone deacetylase inhibitor against human pancreatic cancer. Oncotarget, 2012, 3, 1416-1427.	0.8	46
65	Superior Efficacy of a Combined Epigenetic Therapy against Human Mantle Cell Lymphoma Cells. Clinical Cancer Research, 2012, 18, 6227-6238.	3.2	43
66	Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of a Novel Histone Deacetylase Inhibitor, LAQ824, in Human Colon Carcinoma Cells and Xenografts. Neoplasia, 2008, 10, 303-313.	2.3	41
67	Histone Demethylase LSD1 Promotes Adipocyte Differentiation through Repressing Wnt Signaling. Cell Chemical Biology, 2016, 23, 1228-1240.	2.5	41
68	Epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: Potential role of histone deacetylase 6. Radiotherapy and Oncology, 2009, 92, 125-132.	0.3	40
69	Synergistic action of the novel HSP90 inhibitor NVPâ€AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. European Journal of Haematology, 2010, 84, 337-344.	1.1	40
70	Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro-Oncology, 2008, 10, 309-319.	0.6	38
71	Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2 Inhibitors Recognition by EED. PLoS ONE, 2017, 12, e0169855.	1.1	36
72	Regulation of transcription factor activity during cellular aging. Biochemistry and Cell Biology, 1996, 74, 523-534.	0.9	33

#	Article	IF	Citations
73	A Histone Deacetylase Inhibitor LBH589 Downregulates XIAP in Mesothelioma Cell Lines Which is Likely Responsible for Increased Apoptosis With TRAIL. Journal of Thoracic Oncology, 2009, 4, 149-160.	0.5	32
74	Conformational Refinement of Hydroxamate-Based Histone Deacetylase Inhibitors and Exploration of 3-Piperidin-3-ylindole Analogues of Dacinostat (LAQ824). Journal of Medicinal Chemistry, 2010, 53, 2952-2963.	2.9	32
75	Upregulation of CD11b and CD86 through LSD1 inhibition promotes myeloid differentiation and suppresses cell proliferation in human monocytic leukemia cells. Oncotarget, 2017, 8, 85085-85101.	0.8	32
76	ING1 and 5-Azacytidine Act Synergistically to Block Breast Cancer Cell Growth. PLoS ONE, 2012, 7, e43671.	1.1	30
77	Discovery of Small-Molecule Antagonists of the H3K9me3 Binding to UHRF1 Tandem Tudor Domain. SLAS Discovery, 2018, 23, 930-940.	1.4	29
78	Potentiation of the lethality of the histone deacetylase inhibitor LAQ824 by the cyclin-dependent kinase inhibitor roscovitine in human leukemia cells. Molecular Cancer Therapeutics, 2005, 4, 1772-1785.	1.9	28
79	The design, synthesis and structure–activity relationships of novel isoindoline-based histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4909-4912.	1.0	26
80	Discovery of the Clinical Candidate MAK683: An EED-Directed, Allosteric, and Selective PRC2 Inhibitor for the Treatment of Advanced Malignancies. Journal of Medicinal Chemistry, 2022, 65, 5317-5333.	2.9	24
81	Molecular and Cellular Basis for the Anti-Proliferative Effects of the HDAC Inhibitor LAQ824. Novartis Foundation Symposium, 2008, , 249-268.	1.2	23
82	Concurrent HDAC and mTORC1 Inhibition Attenuate Androgen Receptor and Hypoxia Signaling Associated with Alterations in MicroRNA Expression. PLoS ONE, 2011, 6, e27178.	1.1	16
83	The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin. Clinical Cancer Research, 2012, 18, 2230-2239.	3.2	16
84	Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. Novartis Foundation Symposium, 2004, 259, 249-66; discussion 266-8, 285-8.	1.2	16
85	Combining the differentiating effect of panobinostat with the apoptotic effect of arsenic trioxide leads to significant survival benefit in a model of t(8;21) acute myeloid leukemia. Clinical Epigenetics, 2015, 7, 2.	1.8	13
86	Biocatalytic Synthesis and Structure Elucidation of Cyclized Metabolites of the Deacetylase Inhibitor Panobinostat (LBH589). Drug Metabolism and Disposition, 2012, 40, 1041-1050.	1.7	12
87	Antitumor activities and onâ€ŧarget toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat. International Journal of Cancer, 2011, 128, 2735-2747.	2.3	11
88	HDAC Inhibitors. , 2006, , 315-332.		4
89	Efficacy of Panobinostat (LBH589) in CTCL Cell Lines and a Murine Xenograft Model: Defining Molecular Pathways of Panobinostat Activity in CTCL Blood, 2007, 110, 1375-1375.	0.6	3
90	Efficacy of Panobinostat (LBH589) in Multiple Myeloma Cell Lines and In Vivo Mouse Model: Tumor-Specific Cytotoxicity and Protection of Bone Integrity in Multiple Myeloma Blood, 2007, 110, 1510-1510.	0.6	3