Cristiano Ballabio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring gully erosion in the European Union: A novel approach based on the Land Use/Cover Area frame survey (LUCAS). International Soil and Water Conservation Research, 2022, 10, 17-28.	3.0	23
2	Clobal rainfall erosivity projections for 2050 and 2070. Journal of Hydrology, 2022, 610, 127865.	2.3	51
3	GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion. Scientific Data, 2022, 9, .	2.4	23
4	A spatial assessment of mercury content in the European Union topsoil. Science of the Total Environment, 2021, 769, 144755.	3.9	55
5	Soil erosion modelling: A bibliometric analysis. Environmental Research, 2021, 197, 111087.	3.7	78
6	Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 2021, 780, 146494.	3.9	261
7	Mercury in European topsoils: Anthropogenic sources, stocks and fluxes. Environmental Research, 2021, 201, 111556.	3.7	32
8	Projections of soil loss by water erosion in Europe by 2050. Environmental Science and Policy, 2021, 124, 380-392.	2.4	111
9	Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Scientific Reports, 2020, 10, 11858.	1.6	31
10	Reconstruction of past rainfall erosivity and trend detection based on the REDES database and reanalysis rainfall. Journal of Hydrology, 2020, 590, 125372.	2.3	30
11	Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 2020, 11, 4546.	5.8	365
12	Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21994-22001.	3.3	622
13	A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sensing, 2020, 12, 1365.	1.8	97
14	Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma, 2019, 355, 113912.	2.3	148
15	Objectâ€oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degradation and Development, 2018, 29, 1270-1281.	1.8	44
16	Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Science of the Total Environment, 2018, 636, 282-298.	3.9	240
17	LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 2018, 69, 140-153.	1.8	303
18	Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 2018, 4, eaau3523.	4.7	67

2

CRISTIANO BALLABIO

#	Article	IF	CITATIONS
19	Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils. Sustainability, 2018, 10, 2380.	1.6	95
20	Lateral carbon transfer from erosion in noncroplands matters. Global Change Biology, 2018, 24, 3283-3284.	4.2	15
21	Filling the European blank spot—Swiss soil erodibility assessment with topsoil samples. Journal of Plant Nutrition and Soil Science, 2018, 181, 737-748.	1.1	11
22	Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 2017, 14, 1-19.	1.4	102
23	Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 2017, 7, 4175.	1.6	348
24	Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. Journal of Hydrology, 2017, 548, 251-262.	2.3	132
25	Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 2017, 579, 1298-1315.	3.9	142
26	An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 2017, 8, 2013.	5.8	1,398
27	Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water (Switzerland), 2016, 8, 119.	1.2	60
28	Reply to the comment on "The new assessment of soil loss by water erosion in Europe―by Fiener & Auerswald. Environmental Science and Policy, 2016, 57, 143-150.	2.4	16
29	Reply to "The new assessment of soil loss by water erosion in Europe. Panagos P. et al., 2015 Environ. Sci. Policy 54, 438–447—A response―by Evans and Boardman [Environ. Sci. Policy 58, 11–15]. Environmental Science and Policy, 2016, 59, 53-57.	2.4	24
30	Towards a Panâ€European Assessment of Land Susceptibility to Wind Erosion. Land Degradation and Development, 2016, 27, 1093-1105.	1.8	116
31	Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 2016, 137, 161-172.	2.2	121
32	A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. Science of the Total Environment, 2016, 545-546, 11-20.	3.9	65
33	Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma, 2016, 261, 110-123.	2.3	318
34	Rainfall erosivity in Europe. Science of the Total Environment, 2015, 511, 801-814.	3.9	443
35	The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 2015, 54, 438-447.	2.4	825
36	A map of the topsoil organic carbon content of Europe generated by a generalized additive model. European Journal of Soil Science, 2015, 66, 121-134.	1.8	158

#	Article	IF	CITATIONS
37	Reply to the comment on "Rainfall erosivity in Europe―by Auerswald et al Science of the Total Environment, 2015, 532, 853-857.	3.9	19
38	Soil carbon, multiple benefits. Environmental Development, 2015, 13, 33-38.	1.8	75
39	Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. Proceedings of SPIE, 2014, , .	0.8	2
40	Advances in soil erosion modelling through remote sensing data availability at European scale. Proceedings of SPIE, 2014, , .	0.8	5
41	Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Management, 2014, 5, 185-192.	1.2	46
42	Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in Crete focusing on agricultural land uses. International Journal of Applied Earth Observation and Geoinformation, 2014, 27, 147-155.	1.4	66
43	Wind erosion susceptibility of European soils. Geoderma, 2014, 232-234, 471-478.	2.3	89
44	Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 2014, 479-480, 189-200.	3.9	354
45	Topsoil Organic Carbon Map of Europe. , 2014, , 393-405.		4
46	A Comparison of Dataâ€Driven Groundwater Vulnerability Assessment Methods. Ground Water, 2013, 51, 866-879.	0.7	28
47	Highly spatially- and seasonally-resolved predictive contamination maps for persistent organic pollutants: Development and validation. Science of the Total Environment, 2013, 458-460, 546-554.	3.9	3
48	Estimating the soil organic carbon content for European NUTS2 regions based on LUCAS data collection. Science of the Total Environment, 2013, 442, 235-246.	3.9	49
49	A plant ecology approach to digital soil mapping, improving the prediction of soil organic carbon content in alpine grasslands. Geoderma, 2012, 187-188, 102-116.	2.3	28
50	Aquifer nitrate vulnerability assessment using positive and negative weights of evidence methods, Milan, Italy. Computers and Geosciences, 2012, 48, 199-210.	2.0	16
51	Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy. Mathematical Geosciences, 2012, 44, 47-70.	1.4	196
52	Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology, 2011, 125, 51-61.	1.1	99
53	Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps. Environmental Pollution, 2011, 159, 2656-2664.	3.7	26
54	Reliability of groundwater vulnerability maps obtained through statistical methods. Journal of Environmental Management, 2011, 92, 1215-1224.	3.8	39

CRISTIANO BALLABIO

#	Article	IF	CITATIONS
55	Mapping Heavy Metal Content in Soils with Multi-Kernel SVR and LiDAR Derived Data. , 2010, , 205-216.		3
56	Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment. Science of the Total Environment, 2009, 407, 3836-3846.	3.9	45
57	Seasonal changes and temperature-dependent accumulation of polycyclic aromatic hydrocarbons in high-altitude soils. Science of the Total Environment, 2009, 407, 4269-4277.	3.9	28
58	Preferential retention of POPs on the northern aspect of mountains. Environmental Pollution, 2009, 157, 3298-3307.	3.7	23
59	Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma, 2009, 151, 338-350.	2.3	76
60	Occurrence neighbourhoods and risk assessment from landslide hazard in northern Spain. WIT Transactions on Information and Communication Technologies, 2008, , .	0.0	2