Mehmet C Vuran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11742636/publications.pdf

Version: 2024-02-01

51	9,037	21 h-index	27
papers	citations		g-index
51	51	51	5527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	OneLNK., 2022, , .		O
2	STUN: Secret-Free Trust-Establishment For Underground Wireless Networks. , 2022, , .		0
3	A city-wide experimental testbed for the next generation wireless networks. Ad Hoc Networks, 2021, 111, 102305.	5.5	6
4	Crashing Waves: An Empirical Vehicle-to-Barrier Communication Channel Model via Crash Tests. , 2021, , .		2
5	Impacts of Soil and Antenna Characteristics on LoRa in Internet of Underground Things. , 2021, , .		3
6	A Statistical Impulse Response Model Based on Empirical Characterization of Wireless Underground Channels. IEEE Transactions on Wireless Communications, 2020, 19, 5966-5981.	9.2	21
7	A Theoretical Model of Underground Dipole Antennas for Communications in Internet of Underground Things. IEEE Transactions on Antennas and Propagation, 2019, 67, 3996-4009.	5.1	64
8	Dynamic Pricing of Wireless Internet Based on Usage and Stochastically Changing Capacity. Manufacturing and Service Operations Management, 2019, 21, 833-852.	3.7	3
9	Di-Sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Computer Networks, 2019, 151, 31-41.	5.1	83
10	Vehicle-to-barrier communication during real-world vehicle crash tests. Computer Communications, 2018, 127, 172-186.	5.1	37
11	MPSBL: Multiple Transmit Power Assisted Sequence-Based Localization in Wireless Sensor Networks. , 2018, , .		2
12	Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Networks, 2018, 81, 160-173.	5.5	202
13	Internet of underground things: Sensing and communications on the field for precision agriculture. , 2018, , .		47
14	EM-Based Wireless Underground Sensor Networks. , 2018, , 247-285.		33
15	Collective sensing of workers' gait patterns to identify fall hazards in construction. Automation in Construction, 2017, 82, 166-178.	9.8	98
16	Smart underground antenna arrays: A soil moisture adaptive beamforming approach. , 2017, , .		44
17	Wireless underground channel diversity reception with multiple antennas for internet of underground things. , 2017, , .		36
18	Towards Internet of Underground Things in smart lighting: A statistical model of wireless underground channel., 2017,,.		36

#	Article	IF	Citations
19	Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit. Automation in Construction, 2016, 68, 194-202.	9.8	137
20	Pulses in the sand: Impulse response analysis of wireless underground channel. , 2016, , .		44
21	Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things. , 2016, , .		51
22	Ratings for spectrum: Impacts of TV viewership on TV whitespace. , 2014, , .		6
23	Cooperative Spectrum Sensing in Cognitive Radio Networks Using Multidimensional Correlations. IEEE Transactions on Wireless Communications, 2014, 13, 1832-1843.	9.2	48
24	Stochastic Modeling of Delay, Energy Consumption, and Lifetime. Signals and Communication Technology, 2014, , 11-56.	0.5	2
25	Vibration energy harvesting for wireless underground sensor networks. , 2013, , .		19
26	Impacts of soil moisture on cognitive radio underground networks. , 2013, , .		29
27	Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 2013, 11, 1975-1987.	5. 5	195
28	Exploiting soil moisture information for adaptive error control in wireless underground sensor networks. , 2013, , .		5
29	Wireless Underground Sensor Networks: System in Support of Future Agriculture. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	1
30	Environment aware connectivity for wireless underground sensor networks. , 2013, , .		21
31	Empirical analysis of the hidden terminal problem in Wireless Underground Sensor Networks. , 2012, ,		20
32	Cross-layer analysis of error control in underwater wireless sensor networks. Computer Communications, 2012, 35, 2162-2172.	5.1	14
33	Mobile data harvesting in wireless underground sensor networks. , 2012, , .		20
34	Cross-Layer Analysis of the End-to-End Delay Distribution in Wireless Sensor Networks. IEEE/ACM Transactions on Networking, 2012, 20, 305-318.	3.8	128
35	SDRCS: A service-differentiated real-time communication scheme for event sensing in wireless sensor networks. Computer Networks, 2011, 55, 3287-3302.	5.1	19
36	On network connectivity of wireless sensor networks for sandstorm monitoring. Computer Networks, 2011, 55, 1150-1157.	5.1	38

#	Article	IF	CITATIONS
37	BorderSense: Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 2011, 9, 468-477.	5.5	258
38	MISE-PIPE: Magnetic induction-based wireless sensor networks for underground pipeline monitoring. Ad Hoc Networks, 2011, 9, 218-227.	5.5	208
39	A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves., 2011,,.		17
40	Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 2010, 3, 245-254.	2.1	161
41	Development of a Testbed for Wireless Underground Sensor Networks. Eurasip Journal on Wireless Communications and Networking, 2010, 2010, .	2.4	73
42	Vision Graph Construction in Wireless Multimedia Sensor Networks. , 2010, , .		3
43	XLP: A Cross-Layer Protocol for Efficient Communication in Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2010, 9, 1578-1591.	5.8	135
44	(CPS)^2., 2010,,.		38
45	Empirical Evaluation of Wireless Underground-to-Underground Communication in Wireless Underground Sensor Networks. Lecture Notes in Computer Science, 2009, , 231-244.	1.3	71
46	Signal propagation techniques for wireless underground communication networks. Physical Communication, 2009, 2, 167-183.	2.1	277
47	Error Control in Wireless Sensor Networks: A Cross Layer Analysis. IEEE/ACM Transactions on Networking, 2009, 17, 1186-1199.	3.8	158
48	Cross-Layer Analysis of Error Control in Wireless Sensor Networks. , 2006, , .		51
49	A Cross-Layer Protocol for Wireless Sensor Networks. , 2006, , .		114
50	NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 2006, 50, 2127-2159.	5.1	5,385
51	Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks, 2004, 45, 245-259.	5.1	574