
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 2013, 6, 426.	15.6	874
2	Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 2014, 43, 2587.	18.7	437
3	Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel, 2014, 116, 566-577.	3.4	301
4	Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences, 2015, 16, 14832-14849.	1.8	235
5	A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, 2017, 8, 18-23.	3.2	213
6	Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochemical Engineering Journal, 2008, 41, 128-135.	1.8	169
7	The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 2014, 123, 33-42.	3.4	150
8	Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloids, 2016, 53, 225-232.	5.6	150
9	Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels, Bioproducts and Biorefining, 2014, 8, 686-715.	1.9	148
10	Actinobacillus succinogenes : Advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, 2016, 112, 285-303.	1.8	138
11	Food waste: Challenges and opportunities for enhancing the emerging bio-economy. Journal of Cleaner Production, 2019, 221, 10-16.	4.6	133
12	Microbiological spoilage and investigation of volatile profile during storage of sea bream fillets under various conditions. International Journal of Food Microbiology, 2014, 189, 153-163.	2.1	132
13	Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. Journal of Applied Microbiology, 2015, 118, 911-927.	1.4	126
14	A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresource Technology, 2008, 99, 8310-8315.	4.8	117
15	Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. Journal of Biotechnology, 2009, 143, 51-59.	1.9	114
16	The dynamics of the HS/SPME–GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions. International Journal of Food Microbiology, 2015, 193, 51-58.	2.1	109
17	Variation of the Chemical Profile and Antioxidant Behavior of <i>Rosmarinus officinalis</i> L. and <i>Salvia fruticosa</i> Miller Grown in Greece. Journal of Agricultural and Food Chemistry, 2008, 56, 7254-7264.	2.4	105
18	Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresource Technology, 2020, 307, 123093.	4.8	104

#	Article	IF	CITATIONS
19	The biochemurgist –Bioconversion of agricultural raw materials for chemical production. Biofuels, Bioproducts and Biorefining, 2007, 1, 24-38.	1.9	101
20	Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 2013, 163, 408-418.	1.9	97
21	Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources. Bioresource Technology, 2016, 204, 55-64.	4.8	96
22	Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresource Technology, 2013, 130, 16-22.	4.8	95
23	Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. Journal of Biotechnology, 2014, 189, 36-45.	1.9	91
24	Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chemistry, 2009, 11, 193-200.	4.6	89
25	Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme and Microbial Technology, 2010, 47, 77-83.	1.6	86
26	Citric acid, biomass and cellular lipid production by <i>Yarrowia lipolytica</i> strains cultivated on olive mill wastewaterâ€based media. Journal of Chemical Technology and Biotechnology, 2011, 86, 1439-1448.	1.6	86
27	Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. Journal of Cleaner Production, 2018, 185, 882-890.	4.6	86
28	Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzyme and Microbial Technology, 2007, 40, 1035-1044.	1.6	84
29	Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. Journal of Biotechnology, 2013, 168, 303-314.	1.9	84
30	Conversion of biodieselâ€derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Engineering in Life Sciences, 2017, 17, 262-281.	2.0	84
31	Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Research International, 2015, 73, 81-87.	2.9	83
32	Succinic acid production from wheat using a biorefining strategy. Applied Microbiology and Biotechnology, 2007, 76, 1263-1270.	1.7	77
33	Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresource Technology, 2015, 190, 57-65.	4.8	76
34	Production of addedâ€value metabolites by <i>Yarrowia lipolytica</i> growing in olive mill wastewaterâ€based media under aseptic and nonâ€aseptic conditions. Engineering in Life Sciences, 2017, 17, 695-709.	2.0	75
35	Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Industrial Crops and Products, 2018, 116, 90-96.	2.5	74
36	Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry, 2007, 9, 992.	4.6	72

#	Article	IF	CITATIONS
37	Cereal-based biorefinery development: Integrated enzyme production for cereal flour hydrolysis. Biotechnology and Bioengineering, 2007, 97, 61-72.	1.7	71
38	Production of secondary metabolites through glycerol fermentation under carbonâ€excess conditions by the yeasts <i>Yarrowia lipolytica</i> and <i>Rhodosporidium toruloides</i> . European Journal of Lipid Science and Technology, 2017, 119, 1600507.	1.0	71
39	Restructuring the Conventional Sugar Beet Industry into a Novel Biorefinery: Fractionation and Bioconversion of Sugar Beet Pulp into Succinic Acid and Value-Added Coproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 6569-6579.	3.2	70
40	Oleaginous yeast <i>Cryptococcus curvatus</i> exhibits interplay between biosynthesis of intracellular sugars and lipids. European Journal of Lipid Science and Technology, 2015, 117, 657-672.	1.0	68
41	<i>Rhodosporidium toruloides</i> cultivated in NaClâ€enriched glucoseâ€based media: Adaptation dynamics and lipid production. Engineering in Life Sciences, 2017, 17, 237-248.	2.0	68
42	Utilisation of By-Products from Sunflower-Based Biodiesel Production Processes for the Production of Fermentation Feedstock. Waste and Biomass Valorization, 2013, 4, 529-537.	1.8	66
43	Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresource Technology, 2018, 267, 311-318.	4.8	65
44	A volatilomics approach for off-line discrimination of minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis. Meat Science, 2019, 151, 43-53.	2.7	65
45	Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renewable Energy, 2020, 160, 944-954.	4.3	64
46	Microbial biodegradable plastic production from a wheat-based biorefining strategy. Process Biochemistry, 2010, 45, 153-163.	1.8	63
47	Valorization of bakery waste for biocolorant and enzyme production by Monascus purpureus. Journal of Biotechnology, 2016, 231, 55-64.	1.9	62
48	Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules, 2019, 24, 222.	1.7	61
49	Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnology Advances, 2022, 54, 107783.	6.0	61
50	Evaluating glucose and xylose as cosubstrates for lipid accumulation and <i>γ</i> -linolenic acid biosynthesis of <i>Thamnidium elegans</i> . Journal of Applied Microbiology, 2013, 114, 1020-1032.	1.4	60
51	Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- co) Tj ETQq1 1 0.784314 rgBT Technology, 2014, 172, 121-130.	/Overlock 4.8	10 Tf 50 18 60
52	Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources. ACS Omega, 2018, 3, 10365-10373.	1.6	58
53	Life cycle assessment of bioprocessing schemes for poly(3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resources, Conservation and Recycling, 2019, 141, 317-328.	5.3	57
54	Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 2014, 56, 83-93.	2.5	56

#	Article	IF	CITATIONS
55	Investigation of Volatiles Evolution during the Alcoholic Fermentation of Grape Must Using Free and Immobilized Cells with the Help of Solid Phase Microextraction (SPME) Headspace Sampling. Journal of Agricultural and Food Chemistry, 2002, 50, 3840-3848.	2.4	54
56	Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. Bioresource Technology, 2017, 245, 274-282.	4.8	53
57	Conversions of olive mill wastewaterâ€based media by <i>Saccharomyces cerevisiae</i> through sterile and nonâ€sterile bioprocesses. Journal of Chemical Technology and Biotechnology, 2013, 88, 958-969.	1.6	52
58	Refining of wine lees and cheese whey for the production of microbial oil, polyphenolâ€rich extracts and valueâ€added coâ€products. Journal of Chemical Technology and Biotechnology, 2018, 93, 257-268.	1.6	51
59	Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. International Journal of Food Microbiology, 2014, 171, 68-76.	2.1	50
60	Process Design and Optimization of Novel Wheat-Based Continuous Bioethanol Production System. Biotechnology Progress, 2007, 23, 1394-1403.	1.3	49
61	Lipid production and characterization by <i>Mortierella </i> (<i>Umbelopsis </i>) <i>isabellina </i> cultivated on lignocellulosic sugars. Journal of Applied Microbiology, 2017, 123, 1461-1477.	1.4	49
62	Development of a process for the production of nutrient supplements for fermentations based on fungal autolysis. Enzyme and Microbial Technology, 2005, 36, 629-638.	1.6	47
63	The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Food Research International, 2018, 111, 498-508.	2.9	47
64	Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnology for Biofuels, 2020, 13, 72.	6.2	47
65	Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enzyme and Microbial Technology, 2009, 44, 223-228.	1.6	46
66	Techno-economic evaluation of wine lees refining for the production of value-added products. Biochemical Engineering Journal, 2016, 116, 157-165.	1.8	46
67	Extraction of Phenolic Compounds from Palm Oil Processing Residues and Their Application as Antioxidants. Food Technology and Biotechnology, 2019, 57, 29-38.	0.9	46
68	Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chemistry, 2020, 308, 125658.	4.2	46
69	Integrated sunflower-based biorefinery for the production of antioxidants, protein isolate and poly(3-hydroxybutyrate). Industrial Crops and Products, 2015, 71, 106-113.	2.5	45
70	Modelling succinic acid fermentation using a xylose based substrate. Biochemical Engineering Journal, 2016, 114, 26-41.	1.8	45
71	Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Engineering in Life Sciences, 2017, 17, 333-344.	2.0	45
72	Hybridised sustainability metrics for use in life cycle assessment of bio-based products: resource efficiency and circularity. Green Chemistry, 2020, 22, 803-813.	4.6	45

#	Article	IF	CITATIONS
73	Food waste from restaurant sector – Characterization for biorefinery approach. Bioresource Technology, 2020, 301, 122779.	4.8	44
74	Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresource Technology, 2014, 159, 167-175.	4.8	42
75	Succinic acid production by <i>Actinobacillus succinogenes</i> from batch fermentation of mixed sugars. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1117-1130.	1.4	42
76	Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. Environmental Science and Pollution Research, 2018, 25, 35960-35970.	2.7	42
77	Biodiesel production using microbial lipids derived from food waste discarded by catering services. Bioresource Technology, 2021, 323, 124597.	4.8	42
78	Isolation, identification and screening of yeasts towards their ability to assimilate biodieselâ€derived crude glycerol: microbial production of polyols, endopolysaccharides and lipid. Journal of Applied Microbiology, 2019, 127, 1080-1100.	1.4	41
79	Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes. Industrial Crops and Products, 2021, 168, 113578.	2.5	41
80	Evaluation of wheat as generic feedstock for chemical production. Industrial Crops and Products, 2004, 20, 75-88.	2.5	40
81	Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food and Bioproducts Processing, 2016, 100, 323-334.	1.8	40
82	Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separation and Purification Technology, 2019, 209, 666-675.	3.9	40
83	Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods, 2020, 9, 190.	1.9	40
84	Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresource Technology, 2022, 343, 125989.	4.8	39
85	Development of an Oat-Based Biorefinery for the Production ofl(+)-Lactic Acid byRhizopus oryzaeand Various Value-Added Coproducts. Journal of Agricultural and Food Chemistry, 2007, 55, 1755-1761.	2.4	38
86	Spoilage Potential of Pseudomonas (P. fragi, P. putida) and LAB (Leuconostoc mesenteroides,) Tj ETQq0 0 0 rgBT GC/MS and Data Analytics. Foods, 2020, 9, 633.	/Overlock 1.9	10 Tf 50 22 38
87	Stability of double emulsions with PGPR, bacterial cellulose and whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 445-452.	2.3	35
88	Valorisation of sugarcane molasses for the production of microbial lipids via fermentation of two <i>Rhodosporidium</i> strains for enzymatic synthesis of polyol esters. Journal of Chemical Technology and Biotechnology, 2020, 95, 402-407.	1.6	35
89	Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production. Journal of Biotechnology, 2016, 233, 95-105.	1.9	34
90	Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chemistry, 2016, 198, 85-92.	4.2	34

#	Article	IF	CITATIONS
91	Enhanced 2,3-Butanediol production by mutant Enterobacter ludwigii using Brewers' spent grain hydrolysate: Process optimization for a pragmatic biorefinery loom. Chemical Engineering Journal, 2022, 427, 130851.	6.6	34
92	Estimation of fungal growth in complex, heterogeneous culture. Biochemical Engineering Journal, 2003, 14, 93-100.	1.8	32
93	Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresource Technology, 2017, 238, 214-222.	4.8	32
94	Valorisation of fruit and vegetable waste from open markets for the production of 2,3-butanediol. Food and Bioproducts Processing, 2018, 108, 27-36.	1.8	32
95	Improvement on bioprocess economics for 2,3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation. Bioresource Technology, 2019, 274, 343-352.	4.8	32
96	Techno-economic analysis and life cycle assessment of heterotrophic yeast-derived single cell oil production process. Fuel, 2020, 264, 116839.	3.4	32
97	Optimisation of 2,3-butanediol production by Enterobacter ludwigii using sugarcane molasses. Biochemical Engineering Journal, 2019, 152, 107370.	1.8	31
98	Evaluation of 1,3-propanediol production by twoCitrobacter freundiistrains using crude glycerol and soybean cake hydrolysate. Environmental Science and Pollution Research, 2019, 26, 35523-35532.	2.7	30
99	Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods, 2021, 10, 768.	1.9	30
100	Extraction of phenolic compounds and succinic acid production from spent sulphite liquor. Journal of Chemical Technology and Biotechnology, 2016, 91, 2751-2760.	1.6	29
101	Evaluation of an integrated biorefinery based on fractionation of spent sulphite liquor for the production of an antioxidant-rich extract, lignosulphonates and succinic acid. Bioresource Technology, 2016, 214, 504-513.	4.8	29
102	Techno-economic evaluation and life-cycle assessment of poly(3-hydroxybutyrate) production within a biorefinery concept using sunflower-based biodiesel industry by-products. Bioresource Technology, 2021, 326, 124711.	4.8	29
103	Techno-economic risk assessment, life cycle analysis and life cycle costing for poly(butylene) Tj ETQq1 1 0.78431 Environment, 2022, 806, 150594.	4 rgBT /O 3.9	verlock 10 Tf 29
104	Kinetic parameters of Aspergillus awamori in submerged cultivations on whole wheat flour under oxygen limiting conditions. Biochemical Engineering Journal, 2003, 16, 23-34.	1.8	28
105	Volatile Compounds of Wines Produced by Cells Immobilized on Grape Skins. Journal of Agricultural and Food Chemistry, 2003, 51, 3060-3066.	2.4	28
106	Extraction of bioactive compounds from palm (Elaeis guineensis) pressed fiber using different compressed fluids. Journal of Supercritical Fluids, 2016, 112, 51-56.	1.6	28
107	Ultrasound-assisted extraction of bioactive compounds from palm pressed fiber with high antioxidant and photoprotective activities. Ultrasonics Sonochemistry, 2017, 36, 362-366.	3.8	28
108	Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Research International, 2019, 126, 108684.	2.9	28

#	Article	IF	CITATIONS
109	Molecular Characterization and Enological Potential of A High Lactic Acid-Producing Lachancea thermotolerans Vineyard Strain. Foods, 2020, 9, 595.	1.9	28
110	Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate. Biomolecules, 2020, 10, 106.	1.8	27
111	Bioprocess development using organic biowaste and sustainability assessment of succinic acid production with engineered Yarrowia lipolytica strain. Biochemical Engineering Journal, 2021, 174, 108099.	1.8	27
112	Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. Bioresource Technology, 2022, 348, 126295.	4.8	27
113	Lactic acid fermentation modelling of Streptococcus thermophilus YI-B1 and Lactobacillus casei Shirota using food waste derived media. Biochemical Engineering Journal, 2017, 127, 97-109.	1.8	26
114	Biotechnological Production of Fumaric Acid: The Effect of Morphology of Rhizopus arrhizus NRRL 2582. Fermentation, 2017, 3, 33.	1.4	26
115	Liquid–Liquid Extraction of Phenolic Compounds from Spent Sulphite Liquor. Waste and Biomass Valorization, 2015, 6, 1149-1159.	1.8	25
116	Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis. Applied Biochemistry and Biotechnology, 2017, 181, 1241-1256.	1.4	25
117	Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells. Materials Science and Engineering C, 2017, 71, 214-221.	3.8	25
118	Volatilome of Chill-Stored European Seabass (Dicentrarchus labrax) Fillets and Atlantic Salmon (Salmo salar) Slices under Modified Atmosphere Packaging. Molecules, 2020, 25, 1981.	1.7	25
119	Development of a Circular Oriented Bioprocess for Microbial Oil Production Using Diversified Mixed Confectionery Side-Streams. Foods, 2019, 8, 300.	1.9	24
120	Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste. Bioresource Technology, 2021, 335, 125155.	4.8	24
121	The Application of a Generic Feedstock from Wheat for Microbial Fermentations. Biotechnology Progress, 2002, 18, 1033-1038.	1.3	23
122	Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters. Energies, 2019, 12, 3649.	1.6	23
123	Biodegradation and toxicity of emerging contaminants: Isolation of an exopolysaccharide-producing Sphingomonas sp. for ionic liquids bioremediation. Journal of Hazardous Materials, 2019, 365, 88-96.	6.5	23
124	Risk assessment modeling of bio-based chemicals economics based on Monte-Carlo simulations. Chemical Engineering Research and Design, 2020, 163, 273-280.	2.7	23
125	Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes, 2020, 8, 819.	1.3	23
126	Bioprocess Development for 2,3â€Butanediol Production by <i>Paenibacillus</i> Strains. ChemBioEng Reviews, 2021, 8, 44-62.	2.6	23

#	Article	IF	CITATIONS
127	Valorization of spent sulphite liquor for succinic acid production via continuous fermentation system. Biochemical Engineering Journal, 2018, 137, 262-272.	1.8	22
128	Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations. Food and Bioprocess Technology, 2019, 12, 899-909.	2.6	22
129	Estimation of volumetric mass transfer coefficient (kLa)—Review of classical approaches and contribution of a novel methodology. Biochemical Engineering Journal, 2020, 155, 107458.	1.8	22
130	Biorefinery development, techno-economic evaluation and environmental impact analysis for the conversion of the organic fraction of municipal solid waste into succinic acid and value-added fractions. Bioresource Technology, 2022, 354, 127172.	4.8	22
131	Optimal design of upstream processes in biotransformation technologies. Bioresource Technology, 2017, 224, 509-514.	4.8	21
132	Enzymatic synthesis of bio-based wax esters from palm and soybean fatty acids using crude lipases produced on agricultural residues. Industrial Crops and Products, 2019, 139, 111499.	2.5	21
133	Varietal and Geographical Discrimination of Greek Monovarietal Extra Virgin Olive Oils Based on Squalene, Tocopherol, and Fatty Acid Composition. Molecules, 2020, 25, 3818.	1.7	21
134	Volatile Profiling of Pleurotus eryngii and Pleurotus ostreatus Mushrooms Cultivated on Agricultural and Agro-Industrial By-Products. Foods, 2021, 10, 1287.	1.9	21
135	Dry processing of oats – Application of dry milling. Journal of Food Engineering, 2007, 82, 559-567.	2.7	20
136	Indigenous Yeast Interactions in Dual-Starter Fermentations May Improve the Varietal Expression of Moschofilero Wine. Frontiers in Microbiology, 2019, 10, 1712.	1.5	20
137	Bioprocess development for (2R,3R)â€butanediol and acetoin production using very high polarity cane sugar and sugarcane molasses by a <i>Bacillus amyloliquefaciens</i> strain. Journal of Chemical Technology and Biotechnology, 2019, 94, 2167-2177.	1.6	20
138	Valorization of Zante currant sideâ€streams for the production of phenolicâ€rich extract and bacterial cellulose: a novel biorefinery concept. Journal of Chemical Technology and Biotechnology, 2020, 95, 427-438.	1.6	20
139	Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. Journal of Biotechnology, 2013, 168, 303-14.	1.9	20
140	Direct electrochemical extraction increases microbial succinic acid production from spent sulphite liquor. Green Chemistry, 2019, 21, 2401-2411.	4.6	19
141	Development of novel wheat biorefining: Effect of gluten extraction from wheat on bioethanol production. Biochemical Engineering Journal, 2009, 43, 113-121.	1.8	18
142	Sustainable arabitol production by a newly isolated Debaryomyces prosopidis strain cultivated on biodiesel-derived glycerol. Carbon Resources Conversion, 2022, 5, 92-99.	3.2	18
143	TREATMENT OF WASTEWATER WITH HIGH FAT CONTENT EMPLOYING AN ENZYME POOL AND BIOSURFACTANT: TECHNICAL AND ECONOMIC FEASIBILITY. Brazilian Journal of Chemical Engineering, 2018, 35, 531-542.	0.7	17
144	Investigation of Anthocyanins Stability from Pomegranate Juice (Punica Granatum L. Cv Ermioni) under a Simulated Digestion Process. Medicines (Basel, Switzerland), 2019, 6, 90.	0.7	17

#	Article	IF	CITATIONS
145	Integrated Fermentative Production and Downstream Processing of 2,3-Butanediol from Sugarcane Bagasse-Derived Xylose by Mutant Strain of <i>Enterobacter ludwigii</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 10381-10391.	3.2	17
146	Evolution of Volatile Byproducts during Wine Fermentations Using Immobilized Cells on Grape Skins. Journal of Agricultural and Food Chemistry, 2003, 51, 2402-2408.	2.4	16
147	Food Waste and Byproduct Valorization through Bio-processing: Opportunities and Challenges. BioResources, 2014, 9, 5774-5777.	0.5	16
148	Bioactivity of Epigallocatechin Gallate Nanoemulsions Evaluated in Mice Model. Journal of Medicinal Food, 2017, 20, 923-931.	0.8	16
149	Development of biodegradable films using sunflower protein isolates and bacterial nanocellulose as innovative food packaging materials for fresh fruit preservation. Scientific Reports, 2022, 12, 6935.	1.6	16
150	Effect of pearling on dry processing of oats. Journal of Food Engineering, 2007, 82, 369-376.	2.7	15
151	Production of Fermentation Feedstock from Jerusalem Artichoke Tubers and its Potential for Polyhydroxybutyrate Synthesis. Waste and Biomass Valorization, 2013, 4, 359-370.	1.8	15
152	Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 203-210.	2.3	14
153	Biodiversity and Enological Potential of Non-Saccharomyces Yeasts from Nemean Vineyards. Fermentation, 2018, 4, 32.	1.4	14
154	Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants, 2021, 10, 1250.	2.2	14
155	A newly isolated <i>Enterobacter</i> sp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates. FEMS Microbiology Letters, 2019, 366, .	0.7	13
156	Gas Chromatography–Mass Spectrometry-Based Metabolite Profiling for the Assessment of Freshness in Gilthead Sea Bream (Sparus aurata). Foods, 2020, 9, 464.	1.9	13
157	Optimization of fermentation medium for succinic acid production using Basfia succiniciproducens. Environmental Technology and Innovation, 2021, 24, 101914.	3.0	13
158	Renewable carbon opportunities in the production of succinic acid applying attributional and consequential modelling. Chemical Engineering Journal, 2022, 428, 132011.	6.6	13
159	Valorization of low-cost, carbon-rich substrates by edible ascomycetes and basidiomycetes grown on liquid cultures. FEMS Microbiology Letters, 2020, 367, .	0.7	12
160	Fed-batch bioprocess development for astaxanthin production by Xanthophyllomyces dendrorhous based on the utilization of Prosopis sp. pods extract. Biochemical Engineering Journal, 2021, 166, 107844.	1.8	12
161	Microbiological assessment of aerobically stored horse fillets through predictive microbiology and metabolomic approach. Meat Science, 2021, 172, 108323.	2.7	12
162	Corinthian currants finishing side-stream: Chemical characterization, volatilome, and valorisation through wine and baker's yeast production-technoeconomic evaluation. Food Chemistry, 2021, 342, 128161.	4.2	12

#	Article	IF	CITATIONS
163	Volatile Composition of Industrially Fermented Table Olives from Greece. Foods, 2021, 10, 1000.	1.9	12
164	A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochemical Engineering Journal, 2020, 154, 107462.	1.8	11
165	Restructuring the sunflower-based biodiesel industry into a circular bio-economy business model converting sunflower meal and crude glycerol into succinic acid and value-added co-products. Biomass and Bioenergy, 2021, 155, 106265.	2.9	11
166	Vinegar Production from Corinthian Currants Finishing Side-Stream: Development and Comparison of Methods Based on Immobilized Acetic Acid Bacteria. Foods, 2021, 10, 3133.	1.9	11
167	A mathematical programming formulation for biorefineries technology selection. Biochemical Engineering Journal, 2016, 116, 135-145.	1.8	10
168	Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives. Food Microbiology, 2017, 63, 72-83.	2.1	10
169	Enzymatic production of isopropyl and 2-ethylhexyl esters using \hat{I}^3 -linolenic acid rich fungal oil produced from spent sulphite liquor. Biochemical Engineering Journal, 2021, 169, 107956.	1.8	10
170	Production of fuels from microbial oil using oleaginous microorganisms. , 2016, , 201-236.		9
171	Assessment of Volatile Compounds Evolution, Antioxidant Activity, and Total Phenolics Content during Cold Storage of Pomegranate Beverage Fermented by Lactobacillus paracasei K5. Fermentation, 2018, 4, 95.	1.4	9
172	Inventory of food processing side streams in European Union and prospects for biorefinery development. , 2020, , 181-199.		9
173	Effect of a Carotenoid Extract from Citrus reticulata By-Products on the Immune-Oxidative Status of Broilers. Antioxidants, 2022, 11, 144.	2.2	9
174	Succinic acid production from pulp and paper industry waste: A transcriptomic approach. Journal of Biotechnology, 2021, 325, 250-260.	1.9	8
175	Bioprocess Development for 2,3-Butanediol Production from Crude Glycerol and Conceptual Process Design for Aqueous Conversion into Methyl Ethyl Ketone. ACS Sustainable Chemistry and Engineering, 2021, 9, 8692-8705.	3.2	8
176	Coproduction of Microbial Oil and Carotenoids within the Circular Bioeconomy Concept: A Sequential Solid-State and Submerged Fermentation Approach. Fermentation, 2022, 8, 258.	1.4	8
177	Modelling Studies of a Process to Produce a Generic Bioconversion Feedstock from Wheat. Food and Bioproducts Processing, 2003, 81, 239-249.	1.8	7
178	Current and new Green Deal solutions for sustainable food processing. Current Opinion in Environmental Science and Health, 2021, 21, 100244.	2.1	7
179	Spoilage Investigation of Chill Stored Meagre (Argyrosomus regius) Using Modern Microbiological and Analytical Techniques. Foods, 2021, 10, 3109.	1.9	7
180	Elucidation of the Volatilome of Packaged Spanish-Style Green Olives of Conservolea and Halkidiki Varieties Using SPME-GC/MS. Proceedings (mdpi), 2020, 70, .	0.2	6

#	Article	IF	CITATIONS
181	Bioconversions of Biodiesel-Derived Glycerol into Sugar Alcohols by Newly Isolated Wild-Type Yarrowia lipolytica Strains. Reactions, 2021, 2, 499-513.	0.9	6
182	Bioenergy Technology and Food Industry Waste Valorization for Integrated Production of Polyhydroxyalkanoates. , 2014, , 419-433.		5
183	Volatile Organic Compounds and 16S Metabarcoding in Ice-Stored Red Seabream Pagrus major. Foods, 2022, 11, 666.	1.9	5
184	Chemical Profiling, Bioactivity Evaluation and the Discovery of a Novel Biopigment Produced by Penicillium purpurogenum CBS 113139. Molecules, 2022, 27, 69.	1.7	5
185	Optimization and Cost Estimation of Novel Wheat Biorefining for Continuous Production of Fermentation Feedstock. Biotechnology Progress, 2007, 23, 872-880.	1.3	5
186	Enrichment of fermentation media and optimization of expression conditions for the production of EAK ₁₆ peptide as fusions with SUMO. Biotechnology and Bioengineering, 2009, 102, 725-735.	1.7	4
187	Solid-State Fermentation for the Production of Proteases and Amylases and Their Application in Nutrient Medium Production. , 2018, , 185-210.		4
188	Immune-Related Gene Expression Profiling of Broiler Chickens Fed Diets Supplemented with Vinification Byproducts: A Valorization Approach II. Animals, 2021, 11, 3038.	1.0	3
189	Comparison of Different Compressed Fluids for Residual Oil Extraction from Palm Kernel Cake. Waste and Biomass Valorization, 2018, 9, 265-271.	1.8	2
190	Valorization of fruit processing by-product streams into integrated biorefinery concepts: extraction of value-added compounds and bioconversion to chemicals. , 2021, , 927-945.		2
191	Techno-Economic Evaluation of Refining of Food Supply Chain Wastes for the Production of Chemicals and Biopolymers. , 2017, , 147-164.		2
192	The Effect of Terpenoid Compounds on the Formation of Advanced Glycation Endproducts (AGEs) in Model Systems. Applied Sciences (Switzerland), 2022, 12, 908.	1.3	1
193	Techno-economic evaluation and life-cycle assessment of integrated biorefineries within a circular bioeconomy concept. , 2022, , 541-556.		1
194	Biorefinery Engineering. , 2019, , 879-892.		0
195	Valorization of the organic fraction of municipal solid waste for fumaric acid production and electrochemical membrane extraction using Candida blankii. Bioresource Technology Reports, 2022, 17, 100900.	1.5	0
196	Nanocellulose Production from Different Sources and Their Self-Assembly in Composite Materials. , 2022, , 51-82.		0