
## Yanan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11740845/publications.pdf Version: 2024-02-01



ΥΛΝΛΝΙΙΙ

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews, 2016, 45, 5888-5924.                                                                                           | 38.1 | 977       |
| 2  | Antifouling membrane surface construction: Chemistry plays a critical role. Journal of Membrane Science, 2018, 551, 145-171.                                                                                                  | 8.2  | 309       |
| 3  | Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation. ACS<br>Applied Materials & Interfaces, 2016, 8, 8247-8256.                                                                            | 8.0  | 214       |
| 4  | 2D Heterostructure Membranes with Sunlightâ€Driven Selfâ€Cleaning Ability for Highly Efficient<br>Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1706545.                                                     | 14.9 | 182       |
| 5  | Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. Journal of Materials Chemistry A, 2019, 7, 25641-25649.                                                                 | 10.3 | 173       |
| 6  | Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation.<br>Journal of Membrane Science, 2018, 566, 268-277.                                                                                 | 8.2  | 143       |
| 7  | Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Advances, 2015, 5, 107777-107784.                                                                                    | 3.6  | 141       |
| 8  | Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via<br>interfacial polymerization from a novel zwitterionic amine monomer. Journal of Membrane Science,<br>2016, 503, 101-109. | 8.2  | 126       |
| 9  | Antifouling, high-flux oil/water separation carbon nanotube membranes by polymer-mediated surface charging and hydrophilization. Journal of Membrane Science, 2017, 542, 254-263.                                             | 8.2  | 96        |
| 10 | Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to<br>endow ultrafiltration membranes with enhanced antifouling performance. Journal of Membrane<br>Science, 2016, 499, 56-64.   | 8.2  | 91        |
| 11 | Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface<br>modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 2015, 486, 195-206.                          | 8.2  | 85        |
| 12 | Fabrication of antifouling polymer–inorganic hybrid membranes through the synergy of biomimetic<br>mineralization and nonsolvent induced phase separation. Journal of Materials Chemistry A, 2015, 3,<br>7287-7295.           | 10.3 | 84        |
| 13 | Mixed Nanosheet Membranes Assembled from Chemically Grafted Graphene Oxide and Covalent<br>Organic Frameworks for Ultra-high Water Flux. ACS Applied Materials & Interfaces, 2019, 11,<br>28978-28986.                        | 8.0  | 72        |
| 14 | Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties. Journal of Membrane Science, 2018, 548, 621-631.                                                 | 8.2  | 67        |
| 15 | Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances. Journal of Materials Chemistry A, 2016, 4, 7892-7902.                                          | 10.3 | 66        |
| 16 | Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation. Nanoscale, 2017, 9, 7508-7518.                                                  | 5.6  | 63        |
| 17 | Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water<br>Emulsion. ACS Applied Materials & Interfaces, 2018, 10, 26546-26554.                                                       | 8.0  | 59        |
| 18 | Enhanced membrane antifouling and separation performance by manipulating phase separation and surface segregation behaviors through incorporating versatile modifier. Journal of Membrane Science, 2016, 499, 406-417.        | 8.2  | 54        |

Yanan Liu

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. Journal of Materials Chemistry A, 2019, 7, 11468-11477.                       | 10.3 | 54        |
| 20 | Antifouling high-flux membranes via surface segregation and phase separation controlled by the<br>synergy of hydrophobic and hydrogen bond interactions. Journal of Membrane Science, 2016, 520,<br>814-822. | 8.2  | 52        |
| 21 | Mixed-dimensional membranes: chemistry and structure–property relationships. Chemical Society<br>Reviews, 2021, 50, 11747-11765.                                                                             | 38.1 | 51        |
| 22 | In situ construction of chemically heterogeneous hydrogel surfaces toward near-zero-flux-decline membranes for oil-water separation. Journal of Membrane Science, 2020, 594, 117455.                         | 8.2  | 50        |
| 23 | Polyphenol-assisted in-situ assembly for antifouling thin-film composite nanofiltration membranes.<br>Journal of Membrane Science, 2018, 566, 258-267.                                                       | 8.2  | 43        |
| 24 | Manipulating membrane surface porosity and pore size by in-situ assembly of Pluronic F127 and tannin.<br>Journal of Membrane Science, 2018, 556, 285-292.                                                    | 8.2  | 41        |
| 25 | Producing methylcyclopentadiene dimer and trimer based high-performance jet fuels using 5-methyl<br>furfural. Green Chemistry, 2020, 22, 7765-7768.                                                          | 9.0  | 35        |
| 26 | Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles. Journal of Membrane Science, 2015, 495, 226-234.                                                     | 8.2  | 34        |
| 27 | Highly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis. Analyst, The, 2015, 140, 2762-2770.                                | 3.5  | 33        |
| 28 | Constructing membrane surface with synergistic passive antifouling and active antibacterial<br>strategies through organic-inorganic composite modifier. Journal of Membrane Science, 2019, 576,<br>150-160.  | 8.2  | 32        |
| 29 | Ultrathin fluorinated self-cleaning membranes <i>via</i> coordination-driven metal-bridging assembly for water purification. Journal of Materials Chemistry A, 2020, 8, 4505-4514.                           | 10.3 | 31        |
| 30 | Mussel-inspired construction of organic-inorganic interfacial nanochannels for ion/organic molecule selective permeation. Journal of Membrane Science, 2018, 555, 337-347.                                   | 8.2  | 29        |
| 31 | Graphene oxide membranes with an ultra-large interlayer distance through vertically grown<br>covalent organic framework nanosheets. Journal of Materials Chemistry A, 2019, 7, 25458-25466.                  | 10.3 | 28        |
| 32 | In-situ construction of antifouling separation layer via a reaction enhanced surface segregation method. Chemical Engineering Science, 2018, 190, 89-97.                                                     | 3.8  | 27        |
| 33 | Preparation of Antifouling Nanofiltration Membrane via Interfacial Polymerization of Fluorinated<br>Polyamine and Trimesoyl Chloride. Industrial & Engineering Chemistry Research, 2015, 54, 8302-8310.      | 3.7  | 25        |
| 34 | Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of<br>Membrane Science, 2021, 638, 119706.                                                                   | 8.2  | 24        |
| 35 | Manipulating the multifunctionalities of polydopamine to prepare high-flux anti-biofouling composite nanofiltration membranes. RSC Advances, 2016, 6, 32863-32873.                                           | 3.6  | 23        |
| 36 | Cell Membraneâ€Inspired Graphene Nanomesh Membrane for Fast Separation of Oilâ€Inâ€Water Emulsions.<br>Advanced Functional Materials, 2022, 32, .                                                            | 14.9 | 19        |

Yanan Liu

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Achieving persistent high-flux membranes via kinetic and thermodynamic synergistic manipulation of surface segregation process. Journal of Membrane Science, 2017, 540, 333-343. | 8.2 | 16        |
| 38 | Fabrication and characterization of antifouling carbon nanotube/polyethersulfone ultrafiltration membranes. RSC Advances, 2016, 6, 35532-35538.                                  | 3.6 | 13        |
| 39 | Increased E. coli bio-adsorption resistance of microfiltration membranes, using a bio-inspired approach. Science of the Total Environment, 2021, 751, 141777.                    | 8.0 | 6         |
| 40 | Two types of oil modified tips as force sensors to detect adhesion forces between oil and membrane surfaces in fluid. Sensors and Actuators A: Physical, 2017, 267, 127-134.     | 4.1 | 4         |