Chang Duk Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174070/publications.pdf Version: 2024-02-01

	34105	20358
14,435	52	116
citations	h-index	g-index
171	171	9318
docs citations	times ranked	citing authors
	14,435 citations 171 docs citations	14,43552citationsh-index171171docs citationstimes ranked

#	Article	IF	CITATIONS
1	Effect of Third Component on Efficiency and Stability in Ternary Organic Solar Cells: More than a Simple Superposition. Solar Rrl, 2022, 6, 2100819.	5.8	32
2	Guanineâ€Based Gâ€Quadruplexes Templated by Various Cations toward Potential Use as Singleâ€lon Conductors. ChemSusChem, 2022, 15, .	6.8	1
3	Volatile Solid Additiveâ€Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells. Advanced Science, 2022, 9, e2105347.	11.2	72
4	Selective, Stable, Biasâ€Free, and Efficient Solar Hydrogen Peroxide Production on Inorganic Layered Materials. Advanced Functional Materials, 2022, 32, .	14.9	19
5	Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 2022, 16, 119-125.	31.4	123
6	Stretchable N-Type High-Performance Polymers Based on Asymmetric Thienylvinyl-1,1-Dicyanomethylene-3-Indanone for Plastic Electronics. Chemistry of Materials, 2022, 34, 1554-1566.	6.7	27
7	Intrachain photophysics of a donor–acceptor copolymer. Physical Chemistry Chemical Physics, 2022, 24, 1982-1992.	2.8	7
8	Random Copolymerization Strategy for Host Polymer Donor PM6 Enables Improved Efficiency Both in Binary and Ternary Organic Solar Cells. ChemSusChem, 2022, 15, .	6.8	4
9	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	12
10	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
11	Non-conjugated terpolymer acceptors for highly efficient and stable lager-area all-polymer solar cells. Journal of Energy Chemistry, 2022, 71, 631-638.	12.9	11
12	Rational Regulation of the Molecular Aggregation Enables A Facile Bladeâ€Coating Process of Largeâ€area Allâ€Polymer Solar Cells with Record Efficiency. Small, 2022, 18, e2200734.	10.0	14
13	Layer-by-layer and non-halogenated solvent processing of benzodithiophene-free simple polymer donors for organic solar cells. Chemical Engineering Journal, 2022, 443, 136515.	12.7	14
14	Usefulness of Polar and Bulky Phosphonate Chain-End Solubilizing Groups in Polymeric Semiconductors. Macromolecules, 2022, 55, 4367-4377.	4.8	15
15	Vinylene-Inserted Asymmetric Polymer Acceptor with Absorption Approaching 1000 nm for Versatile Applications in All-Polymer Solar Cells and Photomultiplication-Type Polymeric Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 26970-26977.	8.0	10
16	Isomerization of Asymmetric Ladderâ€Type Heteroheptaceneâ€Based Smallâ€Molecule Acceptors Improving Molecular Packing: Efficient Nonfullerene Organic Solar Cells with Excellent Fill Factors. Advanced Functional Materials, 2022, 32, .	14.9	20
17	Naphthalene as a Thermalâ€Annealingâ€Free Volatile Solid Additive in Nonâ€Fullerene Polymer Solar Cells with Improved Performance and Reproducibility. Advanced Functional Materials, 2022, 32, .	14.9	29
18	Molecular ordering and phase segregation induced by a volatile solid additive for highly efficient all-small-molecule organic solar cells. Journal of Materials Chemistry A, 2021, 9, 2857-2863.	10.3	36

#	Article	IF	CITATIONS
19	High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells. Chinese Chemical Letters, 2021, 32, 1257-1262.	9.0	15
20	Strategien zur Steigerung der Leistung von PEDOT:PSS/Siâ€Hybridâ€Solarzellen. Angewandte Chemie, 2021, 133, 5092-5112.	2.0	5
21	Performanceâ€Enhancing Approaches for PEDOT:PSSâ€Si Hybrid Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 5036-5055.	13.8	54
22	Sustainable highly charged C ₆₀ -functionalized polyimide in a non-contact mode triboelectric nanogenerator. Energy and Environmental Science, 2021, 14, 1004-1015.	30.8	52
23	A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy and Environmental Science, 2021, 14, 5530-5540.	30.8	66
24	Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy. ACS Applied Bio Materials, 2021, 4, 3453-3461.	4.6	21
25	Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72-77.	27.8	471
26	Antioxidant Additive with a High Dielectric Constant for High Photoâ€Oxidative Stabilization of Organic Solar Cells without Almost Sacrificing Initial High Efficiencies. Solar Rrl, 2021, 5, 2000812.	5.8	12
27	Novel High-Efficiency Polymer Acceptors via Random Ternary Copolymerization Engineering Enables All-Polymer Solar Cells with Excellent Performance and Stability. ACS Applied Materials & Interfaces, 2021, 13, 17892-17901.	8.0	11
28	Two new A-D-A type small molecule acceptors based on C2v-symmetric dithienocyclopentaspiro[fluorene-9,9′-xanthene] core for polymer solar cells. Organic Electronics, 2021, 92, 106120.	2.6	1
29	Thermally Stable and Highâ€Mobility Dithienopyranâ€Based Copolymers: How Donor–Acceptor―and Donor–Donorâ€Type Structures Differ in Thinâ€Film Transistors. Small Structures, 2021, 2, 2100024.	12.0	6
30	Triisopropylsilyl‧ubstituted Benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ′]dithiopheneâ€4,8â€dioneâ€Containing Co with More Than 17% Efficiency in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2102371.	polymers 14.9	43
31	Layer-by-Layer Solution-Processed Organic Solar Cells with Perylene Diimides as Acceptors. ACS Applied Materials & Interfaces, 2021, 13, 29876-29884.	8.0	14
32	Graphene-Assisted Zwitterionic Conjugated Polycyclic Molecular Interfacial Layer Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 5563-5571.	6.7	11
33	Over 13.8% efficiency of organic solar cells fabricated by air-processable spontaneously spreading process through water temperature control. Nano Energy, 2021, 85, 105982.	16.0	11
34	Nâ€Type Quinoidal Polymers Based on Dipyrrolopyrazinedione for Application in Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2021, 27, 13527-13533.	3.3	8
35	Unidirectional Macroscopic Alignment of Chlorobenzo[<i>c</i>]â€[1,2,5]thiadiazoleâ€Based Semiconducting Copolymers with Controlled Regiochemistry. Advanced Electronic Materials, 2021, 7, 2100551.	5.1	4
36	Phase Transition Modulation and Defect Suppression in Perovskite Solar Cells Enabled by a Selfâ€Sacrificed Template. Solar Rrl, 2021, 5, 2100448.	5.8	10

#	Article	IF	CITATIONS
37	Toward Allâ€Vacuumâ€Processable Perovskite Solar Cells with High Efficiency, Stability, and Scalability Enabled by Fluorinated Spiroâ€OMeTAD through Thermal Evaporation. Solar Rrl, 2021, 5, 2100415.	5.8	10
38	Diazapentalene-Containing Ultralow-Band-Gap Copolymers for High-Performance Near-Infrared Organic Phototransistors. Chemistry of Materials, 2021, 33, 7499-7508.	6.7	19
39	Artificial Intelligence Designer for Highly-Efficient Organic Photovoltaic Materials. Journal of Physical Chemistry Letters, 2021, 12, 8847-8854.	4.6	15
40	Thiophene with Oligoethylene Oxide Side Chain Enables Random Terpolymer Acceptor to Achieve Efficient Allâ€Polymer Solar Cells. ChemElectroChem, 2021, 8, 3936-3942.	3.4	7
41	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	3.2	2
42	Regioregular, yet ductile and amorphous indacenodithiophene-based polymers with high-mobility for stretchable plastic transistors. Journal of Materials Chemistry C, 2021, 9, 9670-9682.	5.5	25
43	Viable Mixing Protocol Based on Formulated Equations for Achieving Desired Molecular Weight and Maximal Charge Separation of Photovoltaic Polymer. Advanced Energy Materials, 2021, 11, 2102594.	19.5	19
44	Effects of the Polarity and Bulkiness of End-Functionalized Side Chains on the Charge Transport of Dicyanovinyl-End-Capped Diketopyrrolopyrrole-Based n-Type Small Molecules. ACS Applied Materials & Interfaces, 2021, 13, 52840-52849.	8.0	10
45	A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nature Energy, 2021, 6, 1045-1053.	39.5	230
46	Sequentially Deposited Active Layer with Bulk-Heterojunction-like Morphology for Efficient Conventional and Inverted All-Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 13307-13315.	5.1	10
47	Chiral Optoelectronic Functionalities <i>via</i> DNA–Organic Semiconductor Complex. ACS Nano, 2021, 15, 20353-20363.	14.6	7
48	Controlling the ambipolarity of thieno-benzo-isoindigo polymer-based transistors: the balance of face-on and edge-on populations. Journal of Materials Chemistry C, 2020, 8, 296-302.	5.5	23
49	Horizontalâ€; Verticalâ€; and Cross onjugated Small Molecules: Conjugated Pathwayâ€Performance Correlations along Operation Mechanisms in Ternary Nonâ€Fullerene Organic Solar Cells. Small, 2020, 16, e1905309.	10.0	25
50	High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. Journal of the American Chemical Society, 2020, 142, 1465-1474.	13.7	344
51	Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation. Advanced Materials, 2020, 32, e1906324.	21.0	312
52	Toxic Solvent―and Additiveâ€Free Efficient Allâ€Polymer Solar Cells via a Simple Random Sequence Strategy in Both Donor and Acceptor Copolymer Backbones. Small Methods, 2020, 4, 1900696.	8.6	19
53	A built-in electric field induced by ferroelectrics increases halogen-free organic solar cell efficiency in various device types. Nano Energy, 2020, 68, 104327.	16.0	38
54	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	13.8	105

#	Article	IF	CITATIONS
55	Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors. Nature Communications, 2020, 11, 5814.	12.8	29
56	3D Cu ball-based hybrid triboelectric nanogenerator with non-fullerene organic photovoltaic cells for self-powering indoor electronics. Nano Energy, 2020, 77, 105271.	16.0	33
57	A low boiling-point and low-cost fluorinated additive improves the efficiency and stability of organic solar cells. Journal of Materials Chemistry C, 2020, 8, 15296-15302.	5.5	10
58	High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nature Communications, 2020, 11, 5509.	12.8	103
59	Highly Efficient Organic Photovoltaics Enhanced Using Organic Passivation Layer Vacuum Deposition. Advanced Functional Materials, 2020, 30, 2005037.	14.9	20
60	Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615-1620.	12.6	1,122
61	Dopant-free polymeric hole transport materials for efficient CsPbI ₂ Br perovskite cells with a fill factor exceeding 84%. Journal of Materials Chemistry C, 2020, 8, 8507-8514.	5.5	27
62	Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications, 2020, 11, 2726.	12.8	467
63	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	30.8	324
64	Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 797-805.	3.8	15
65	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	10.3	41
66	Molecular Lock Induced by Chloroplatinic Acid Doping of PEDOT:PSS for High-Performance Organic Photovoltaics. ACS Applied Materials & Interfaces, 2020, 12, 30954-30961.	8.0	33
67	A "σ-Hole―Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells. IScience, 2020, 23, 100965.	4.1	61
68	Twoâ€Ðimension Conjugated Acceptors Based on Benzodi(cyclopentadithiophene) Core with Thiopheneâ€Fused Ending Group for Efficient Polymer Solar Cells. Solar Rrl, 2020, 4, 2000071.	5.8	12
69	D–A Copolymer Donor Based on Bithienyl Benzodithiophene D-Unit and Monoalkoxy Bifluoroquinoxaline A-Unit for High-Performance Polymer Solar Cells. Chemistry of Materials, 2020, 32, 3254-3261.	6.7	43
70	Dithienogermole-Based Nonfullerene Acceptors: Roles of the Side-Chains' Direction and Development of Green-Tinted Efficient Semitransparent Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 7689-7698.	5.1	21
71	Recent Progress in Flexible and Stretchable Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2002529.	14.9	123
72	Regular H-Bonding-Containing Polymers with Stretchability up to 100% External Strain for Self-Healable Plastic Transistors, Chemistry of Materials, 2020, 32, 1914-1924	6.7	60

#	Article	IF	CITATIONS
73	Zwitterionic Conjugated Surfactant Functionalization of Graphene with pHâ€Independent Dispersibility: An Efficient Electron Mediator for the Oxygen Evolution Reaction in Acidic Media. Small, 2020, 16, 1906635.	10.0	8
74	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	24.0	279
75	Understanding the Effect of the Third Component PC ₇₁ BM on Nanoscale Morphology and Photovoltaic Properties of Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900540.	5.8	37
76	Understanding the Morphology of High-Performance Solar Cells Based on a Low-Cost Polymer Donor. ACS Applied Materials & Interfaces, 2020, 12, 9537-9544.	8.0	17
77	Hole Transfer Promoted by a Viscosity Additive in an All-Polymer Photovoltaic Blend. Journal of Physical Chemistry Letters, 2020, 11, 1384-1389.	4.6	6
78	Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule, 2020, 4, 1021-1034.	24.0	148
79	Guest-oriented non-fullerene acceptors for ternary organic solar cells with over 16.0% and 22.7% efficiencies under one-sun and indoor light. Nano Energy, 2020, 75, 104896.	16.0	72
80	Highâ€Output Triboelectric Nanogenerator Based on Dual Inductive and Resonance Effects ontrolled Highly Transparent Polyimide for Selfâ€Powered Sensor Network Systems. Advanced Energy Materials, 2019, 9, 1901987.	19.5	73
81	Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- <i>b</i>]thiophene-Based Electron Acceptors for Efficient Organic Solar Cells with Reduced Energy Losses. ACS Applied Materials & Interfaces, 2019, 11, 35193-35200.	8.0	7
82	Insights into constitutional isomeric effects on donor–acceptor intermolecular arrangements in non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18468-18479.	10.3	38
83	All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor. Joule, 2019, 3, 3034-3047.	24.0	257
84	Understanding of Fluorination Dependence on Electron Mobility and Stability of Naphthalenediimide-Based Polymer Transistors in Environment with 100% Relative Humidity. ACS Applied Materials & Interfaces, 2019, 11, 40347-40357.	8.0	26
85	Conjugationâ€Curtailing of Benzodithionopyranâ€Cored Molecular Acceptor Enables Efficient Airâ€Processed Small Molecule Solar Cells. Small, 2019, 15, e1902656.	10.0	11
86	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	12.8	131
87	Backbone Fluorination of Polythiophenes Improves Device Performance of Non-Fullerene Polymer Solar Cells. ACS Applied Energy Materials, 2019, 2, 7572-7583.	5.1	38
88	Multifaceted Role of a Dibutylhydroxytoluene Processing Additive in Enhancing the Efficiency and Stability of Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 38828-38837.	8.0	10
89	Aqueous dispersions of thienoisoindigo-based semiconductor nanorods assembled with 2-bromobenzaldehyde and a phospholipid. Journal of Molecular Liquids, 2019, 288, 111046.	4.9	2
90	Dithienosilole- <i>co</i> -5-fluoro-2,1,3-benzothiadiazole-containing regioisomeric polymers for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 8522-8526.	5.5	8

#	Article	IF	CITATIONS
91	Cathode interfacial layer-free all small-molecule solar cells with efficiency over 12%. Journal of Materials Chemistry A, 2019, 7, 15944-15950.	10.3	36
92	Furan-flanked diketopyrrolopyrrole-based chalcogenophene copolymers with siloxane hybrid side chains for organic field-effect transistors. Polymer Chemistry, 2019, 10, 2854-2862.	3.9	33
93	Bioderived and Eco-Friendly Solvent-Processed High-Mobility Ambipolar Plastic Transistors through Controlled Irregularity of the Polymer Backbone. Chemistry of Materials, 2019, 31, 3831-3839.	6.7	20
94	Improvement in the Efficiency of Alkylsilyl Functionalized Copolymer for Polymer Solar Cells: Faceâ€On Orientation Enhanced by Random Copolymerization. Solar Rrl, 2019, 3, 1900122.	5.8	17
95	Thickâ€Film Highâ€Performance Solar Cells with a C ₆₀ ontaining Polystyrene Additive. Solar Rrl, 2019, 3, 1900033.	5.8	16
96	Ring-perfluorinated non-volatile additives with a high dielectric constant lead to highly efficient and stable organic solar cells. Journal of Materials Chemistry C, 2019, 7, 4716-4724.	5.5	29
97	A Simple Approach to Prepare Chlorinated Polymer Donors with Low-Lying HOMO Level for High Performance Polymer Solar Cells. Chemistry of Materials, 2019, 31, 6558-6567.	6.7	50
98	Dye encapsulated polymeric nanoprobes for in vitro and in vivo fluorescence imaging in panchromatic range. Journal of Industrial and Engineering Chemistry, 2019, 73, 87-94.	5.8	4
99	Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. Journal of Materials Chemistry A, 2019, 7, 27423-27431.	10.3	23
100	Organic Photovoltaics with Multiple Donor–Acceptor Pairs. Advanced Materials, 2019, 31, e1804762.	21.0	106
101	Boosting the energy conversion efficiency of a combined triboelectric nanogenerator-capacitor. Nano Energy, 2019, 56, 571-580.	16.0	20
102	Influence of the Crystalline Nature of Small Donors Molecules on the Efficiency and Stability of Organic Photovoltaic Devices. Solar Rrl, 2018, 2, 1700235.	5.8	11
103	High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption. Journal of Materials Chemistry A, 2018, 6, 9613-9622.	10.3	25
104	Cubicâ€Like Bimolecular Crystal Evolution and over 12% Efficiency in Halogenâ€Free Ternary Solar Cells. Advanced Functional Materials, 2018, 28, 1707278.	14.9	27
105	A thieno[3,4- <i>b</i>]thiophene linker enables a low-bandgap fluorene-cored molecular acceptor for efficient non-fullerene solar cells. Materials Chemistry Frontiers, 2018, 2, 760-767.	5.9	12
106	High performance p-type chlorinated-benzothiadiazole-based polymer electrolyte gated organic field-effect transistors. Organic Electronics, 2018, 54, 255-260.	2.6	5
107	Effects of incorporating different chalcogenophene comonomers into random acceptor terpolymers on the morphology and performance of all-polymer solar cells. Polymer Chemistry, 2018, 9, 593-602.	3.9	30
108	Regioregular dithienosilole- and dithienogermole-based small molecules with symmetric distal/distal orientation of F atoms. Dyes and Pigments, 2018, 155, 7-13.	3.7	4

#	Article	IF	CITATIONS
109	A Comparative Investigation of Cyclohexylâ€Endâ€Capped Versus Hexylâ€Endâ€Capped Smallâ€Molecule Donors on Small Donor/Polymer Acceptor Junction Solar Cells. Solar Rrl, 2018, 2, 1800009.	5.8	11
110	Overcoming Fill Factor Reduction in Ternary Polymer Solar Cells by Matching the Highest Occupied Molecular Orbital Energy Levels of Donor Polymers. Advanced Energy Materials, 2018, 8, 1702251.	19.5	48
111	Feasible D1–A–D2–A Random Copolymers for Simultaneous Highâ€Performance Fullerene and Nonfullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1702166.	19.5	61
112	An efficient lactone-to-lactam conversion for the synthesis of thiophene Pechmann lactam and the characterization of polymers thereof. Polymer Chemistry, 2018, 9, 5234-5241.	3.9	2
113	Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding. Scientific Reports, 2018, 8, 14448.	3.3	16
114	Semi-transparent low-donor content organic solar cells employing cyclopentadithiophene-based conjugated molecules. Journal of Materials Chemistry C, 2018, 6, 10532-10537.	5.5	14
115	Effects of Alkoxy and Fluorine Atom Substitution of Donor Molecules on the Morphology and Photovoltaic Performance of All Small Molecule Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 413.	3.6	19
116	Harmonious Compatibility Dominates Influence of Side hain Engineering on Morphology and Performance of Ternary Solar Cells. Advanced Energy Materials, 2018, 8, 1800616.	19.5	45
117	Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nature Communications, 2018, 9, 1867.	12.8	60
118	Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy and Environmental Science, 2018, 11, 2569-2580.	30.8	72
119	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie, 2018, 130, 13817-13822.	2.0	4
120	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	2.0	108
121	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13277-13282.	13.8	166
122	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie - International Edition, 2018, 57, 13629-13634.	13.8	43
123	Sideâ€Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. Advanced Energy Materials, 2018, 8, 1800856.	19.5	118
124	A Role of Side-Chain Regiochemistry of Thienylene–Vinylene–Thienylene (TVT) in the Transistor Performance of Isomeric Polymers. Macromolecules, 2017, 50, 884-890.	4.8	49
125	Effect of Heterocyclic Anchoring Sequence on the Properties of Dithienogermole-Based Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7091-7099.	8.0	16
126	High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS Applied Materials & amp; Interfaces, 2017, 9, 15652-15661.	8.0	46

#	Article	IF	CITATIONS
127	Densely Packed Random Quarterpolymers Containing Two Donor and Two Acceptor Units: Controlling Absorption Ability and Molecular Interaction to Enable Enhanced Polymer Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700349.	19.5	22
128	Chlorinated 2,1,3-Benzothiadiazole-Based Polymers for Organic Field-Effect Transistors. Macromolecules, 2017, 50, 4649-4657.	4.8	33
129	Locking-In Optimal Nanoscale Structure Induced by Naphthalenediimide-Based Polymeric Additive Enables Efficient and Stable Inverted Polymer Solar Cells. ACS Nano, 2017, 11, 7409-7415.	14.6	34
130	Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Science Advances, 2017, 3, e1602902.	10.3	204
131	9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. Journal of the American Chemical Society, 2017, 139, 5085-5094.	13.7	303
132	Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. Advanced Materials, 2017, 29, 1605282.	21.0	59
133	Improved interface control for high-performance graphene-based organic solar cells. 2D Materials, 2017, 4, 045004.	4.4	20
134	Influence of Simultaneous Tuning of Molecular Weights and Alkyl Substituents of Poly(thienoisoindigo- <i>alt</i> -naphthalene)s on Morphology and Change Transport Properties. ACS Applied Materials & Interfaces, 2017, 9, 30755-30763.	8.0	14
135	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13503-13507.	13.8	468
136	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2017, 129, 13688-13692.	2.0	51
137	Modulating the Molecular Packing and Nanophase Blending via a Random Terpolymerization Strategy toward 11% Efficiency Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1701125.	19.5	98
138	Over 10% efficiency in single-junction polymer solar cells developed from easily accessible random terpolymers. Nano Energy, 2017, 39, 229-237.	16.0	44
139	Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy and Environmental Science, 2017, 10, 258-265.	30.8	318
140	A Synergetic Effect of Molecular Weight and Fluorine in Allâ€Polymer Solar Cells with Enhanced Performance. Advanced Functional Materials, 2017, 27, 1603564.	14.9	92
141	11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7, 13651.	12.8	917
142	Siloxane Side Chains: A Universal Tool for Practical Applications of Organic Field-Effect Transistors. Macromolecules, 2016, 49, 3739-3748.	4.8	58
143	Improved efficiency of DTGe(FBTTh2)2-based solar cells by using macromolecular additives: How macromolecular additives versus small additives influence nanoscale morphology and photovoltaic performance. Nano Energy, 2016, 24, 56-62.	16.0	25
144	Dicyanomethylene-quinoid vs. dicyanovinyl-benzenoid organic semiconductors: Understanding structure-property correlations in mesomerism-like forms. Organic Electronics, 2016, 37, 402-410.	2.6	14

#	Article	IF	CITATIONS
145	Ultra-narrow-bandgap thienoisoindigo polymers: structure–property correlations in field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 9554-9560.	5.5	28
146	The use of an n-type macromolecular additive as a simple yet effective tool for improving and stabilizing the performance of organic solar cells. Energy and Environmental Science, 2016, 9, 3464-3471.	30.8	99
147	Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2016, 138, 15011-15018.	13.7	826
148	Effect of Donor Molecular Structure and Gate Dielectric on Chargeâ€Transporting Characteristics for Isoindigoâ€Based Donor–Acceptor Conjugated Polymers. Advanced Functional Materials, 2016, 26, 4695-4703.	14.9	30
149	Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. Journal of the American Chemical Society, 2016, 138, 4657-4664.	13.7	743
150	An Indacenodithiophene–Quinoxaline Polymer Prepared by Direct Arylation Polymerization for Organic Photovoltaics. Macromolecules, 2016, 49, 527-536.	4.8	67
151	Control of Charge Dynamics via Use of Nonionic Phosphonate Chains and Their Effectiveness for Inverted Structure Solar Cells. Advanced Energy Materials, 2015, 5, 1500844.	19.5	28
152	Improvement in Solubility and Molecular Assembly of Cyclopentadithiophene-Benzothiadiazole Polymer. Macromolecular Chemistry and Physics, 2015, 216, 1244-1250.	2.2	14
153	A Roundabout Approach to Control Morphological Orientation and Solarâ€Cell Performance by Modulating Sideâ€Chain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	2.1	15
154	Dithienogermoleâ€Containing Smallâ€Molecule Solar Cells with 7.3% Efficiency: Inâ€Depth Study on the Effects of Heteroatom Substitution of Si with Ge. Advanced Energy Materials, 2015, 5, 1402044.	19.5	40
155	A Balanced Face-On to Edge-On Texture Ratio in Naphthalene Diimide-Based Polymers with Hybrid Siloxane Chains Directs Highly Efficient Electron Transport. Macromolecules, 2015, 48, 5179-5187.	4.8	82
156	Thienoisoindigo (TIIG)-based small molecules for the understanding of structure–property–device performance correlations. Journal of Materials Chemistry A, 2015, 3, 9899-9908.	10.3	33
157	Effect of electron-donating unit on crystallinity and charge transport in organic field-effect transistors with thienoisoindigo-based small molecules. Organic Electronics, 2015, 26, 151-157.	2.6	15
158	A Timely Synthetic Tailoring of Biaxially Extended Thienylenevinyleneâ€Like Polymers for Systematic Investigation on Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 586-596.	14.9	54
159	<i>ε</i> â€Branched Flexible Side Chain Substituted Diketopyrrolopyrroleâ€Containing Polymers Designed for High Hole and Electron Mobilities. Advanced Functional Materials, 2015, 25, 247-254.	14.9	108
160	Synthesis of PCDTBT-Based Fluorinated Polymers for High Open-Circuit Voltage in Organic Photovoltaics: Towards an Understanding of Relationships between Polymer Energy Levels Engineering and Ideal Morphology Control. ACS Applied Materials & Interfaces, 2014, 6, 7523-7534.	8.0	88
161	Acceptor–acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors. Chemical Communications, 2014, 50, 2180.	4.1	73
162	Benzodipyrrolidone (BDP)-Based Polymer Semiconductors Containing a Series of Chalcogen Atoms: Comprehensive Investigation of the Effect of Heteroaromatic Blocks on Intrinsic Semiconducting Properties. ACS Applied Materials & amp; Interfaces, 2014, 6, 4872-4882.	8.0	30

#	Article	IF	CITATIONS
163	Ambipolar Semiconducting Polymers with <i>Ï€-</i> Spacer Linked Bis-Benzothiadiazole Blocks as Strong Accepting Units. Chemistry of Materials, 2014, 26, 4933-4942.	6.7	53
164	A Thienoisoindigo-Naphthalene Polymer with Ultrahigh Mobility of 14.4 cm ² /V·s That Substantially Exceeds Benchmark Values for Amorphous Silicon Semiconductors. Journal of the American Chemical Society, 2014, 136, 9477-9483.	13.7	553
165	Naphthalene Diimide Incorporated Thiophene-Free Copolymers with Acene and Heteroacene Units: Comparison of Geometric Features and Electron-Donating Strength of Co-units. Chemistry of Materials, 2013, 25, 3251-3259.	6.7	91
166	Visibleâ€Near Infrared Absorbing Polymers Containing Thienoisoindigo and Electronâ€Rich Units for Organic Transistors with Tunable Polarity. Advanced Functional Materials, 2013, 23, 5317-5325.	14.9	77
167	Boosting the Ambipolar Performance of Solution-Processable Polymer Semiconductors via Hybrid Side-Chain Engineering. Journal of the American Chemical Society, 2013, 135, 9540-9547.	13.7	460
168	Solution-Processable Ambipolar Diketopyrrolopyrrole–Selenophene Polymer with Unprecedentedly High Hole and Electron Mobilities. Journal of the American Chemical Society, 2012, 134, 20713-20721.	13.7	341
169	A Selenophene Analogue of PCDTBT: Selective Fine-Tuning of LUMO to Lower of the Bandgap for Efficient Polymer Solar Calls, Macromologulas, 2012, 45, 8658-8664	4.8	110