Edit Y Tshuva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174017/publications.pdf

Version: 2024-02-01

86 papers 4,054 citations

32 h-index 62 g-index

95 all docs 95 docs citations

95 times ranked 2625 citing authors

#	Article	IF	CITATIONS
1	Binding of the anticancer Ti(IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects. Journal of Inorganic Biochemistry, 2022, 232, 111817.	1.5	4
2	Targeting Protein Interaction Hotspots Using Structured and Disordered Chimeric Peptide Inhibitors. ACS Chemical Biology, 2022, 17, 1811-1823.	1.6	2
3	Effective Oral Administration of an Antitumorigenic Nanoformulated Titanium Complex. ChemMedChem, 2021, 16, 108-112.	1.6	12
4	Synthesis of asymmetrical diaminobis(alkoxo)-bisphenol compounds and their C1-symmetrical mono-ligated titanium(iv) complexes as highly stable highly active antitumor compounds. Dalton Transactions, 2021, 50, 6423-6426.	1.6	10
5	From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium(IV) complex by 19F NMR detection. Journal of Inorganic Biochemistry, 2021, 221, 111492.	1.5	11
6	Homoleptic Ti[ONO] ₂ type complexes of aminoâ€acidâ€tethered phenolato Schiffâ€base ligands: Synthesis, characterization, timeâ€resolved fluorescence spectroscopy, and cytotoxicity against ovarian and colon cancer cells. Applied Organometallic Chemistry, 2020, 34, e5309.	1.7	9
7	Targeting an Interaction Between Two Disordered Domains by Using a Designed Peptide. Chemistry - A European Journal, 2020, 26, 10156-10156.	1.7	2
8	Titanium Tackles the Endoplasmic Reticulum: A First Genomic Study on a Titanium Anticancer Metallodrug. IScience, 2020, 23, 101262.	1.9	18
9	Targeting an Interaction Between Two Disordered Domains by Using a Designed Peptide. Chemistry - A European Journal, 2020, 26, 10240-10249.	1.7	2
10	Preparation, structural characterization and cytotoxicity of hydrolytically stable Ti(IV) citrate complexes. Inorganica Chimica Acta, 2020, 503, 119429.	1.2	3
11	Cytotoxic homoleptic Ti(iv) compounds of ONO-type ligands: synthesis, structures and anti-cancer activity. Dalton Transactions, 2019, 48, 304-314.	1.6	13
12	Electrochemical Triggered Dissolution of Hydroxyapatite/Doxorubicin Nanocarriers. ACS Applied Bio Materials, 2019, 2, 1956-1966.	2.3	3
13	Anticancer diaminotris(phenolato) vanadium(V) complexes: Ligand-metal interplay. Journal of Coordination Chemistry, 2018, 71, 2003-2011.	0.8	21
14	Fluorescent antitumor titanium(<scp>iv</scp>) salen complexes for cell imaging. Dalton Transactions, 2018, 47, 3669-3673.	1.6	29
15	<i>In vitro</i> combinations of inert phenolato Ti(<scp>iv</scp>) complexes with clinically employed anticancer chemotherapy: synergy with oxaliplatin on colon cells. RSC Advances, 2018, 8, 5822-5827.	1.7	7
16	8. COORDINATION COMPLEXES OF TITANIUM(IV) FOR ANTICANCER THERAPY. , 2018, 18, 219-250.		22
17	14. METALLOINTERCALATORS AND METALLOINSERTORS: STRUCTURAL REQUIREMENTS FOR DNA RECOGNITION AND ANTICANCER ACTIVITY. , 2018, 18, 387-436.		9
18	Racemic <i>vs.</i> enantiopure inert Ti(<scp>iv</scp>) complex of a single diaminotetrakis(phenolato) ligand in anticancer activity toward human drug-sensitive and -resistant cancer cell lines. RSC Advances, 2018, 8, 39731-39734.	1.7	5

#	Article	IF	Citations
19	In Vivo Anticancer Activity of a Nontoxic Inert Phenolato Titanium Complex: High Efficacy on Solid Tumors Alone and Combined with Platinum Drugs. ChemMedChem, 2018, 13, 2290-2296.	1.6	24
20	Synthesis of Pure Enantiomers of Titanium(IV) Complexes with Chiral Diaminobis(phenolato) Ligands and Their Biological Reactivity. Scientific Reports, 2018, 8, 9705.	1.6	11
21	Cytotoxic Vanadium Complexes of Branched [ONNO]-Type Diamine Bis(phenolato) Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 1807-1811.	1.0	5
22	Inside Cover: Cytotoxic Titanium(IV) Complexes of Salalen-Based Ligands (Eur. J. Inorg. Chem. 12/2017). European Journal of Inorganic Chemistry, 2017, 2017, 1841-1841.	1.0	0
23	Cytotoxic Titanium(IV) Complexes of Salalenâ€Based Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 1695-1705.	1.0	22
24	Titanium-Phenolato-Based Anticancer Chemotherapy: Developmental Stages., 2017,,.		0
25	Specific Design of Titanium(IV) Phenolato Chelates Yields Stable and Accessible, Effective and Selective Anticancer Agents. Chemistry - A European Journal, 2016, 22, 9849-9849.	1.7	6
26	Specific Design of Titanium(IV) Phenolato Chelates Yields Stable and Accessible, Effective and Selective Anticancer Agents. Chemistry - A European Journal, 2016, 22, 9986-9995.	1.7	35
27	Insights into molecular mechanism of action of salan titanium(IV) complex with in vitro and in vivo anticancer activity. Journal of Inorganic Biochemistry, 2016, 163, 250-257.	1.5	29
28	Effective Inhibition of Cellular ROS Production by MXCXXCâ€Type Peptides: Potential Therapeutic Applications in Copperâ€Homeostasis Disorders. Chemistry - A European Journal, 2016, 22, 9077-9081.	1.7	4
29	Selenocysteine containing analogues of Atx1-based peptides protect cells from copper ion toxicity. Organic and Biomolecular Chemistry, 2016, 14, 6979-6984.	1.5	6
30	Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. Journal of Inorganic Biochemistry, 2016, 159, 29-36.	1.5	12
31	Highly Effective and Hydrolytically Stable Vanadium(V) Amino Phenolato Antitumor Agents. Inorganic Chemistry, 2016, 55, 610-618.	1.9	45
32	Highly Stable Tetra-Phenolato Titanium(IV) Agent Formulated into Nanoparticles Demonstrates Anti-Tumoral Activity and Selectivity. Molecules, 2015, 20, 18526-18538.	1.7	21
33	Cytotoxic O-bridged inert titanium(IV) complexes of phenylenediamine-bis(phenolato) ligands. Inorganic Chemistry Communication, 2015, 53, 31-33.	1.8	8
34	Cationic phenolato titanium(IV) complexes of enhanced solubility as active and biologically accessible anti-tumor compounds. Journal of Organometallic Chemistry, 2015, 788, 33-35.	0.8	13
35	Anti-proliferative activity of the combination of salan Ti(<scp>iv</scp>) complexes with other organic and inorganic anticancer drugs against HT-29 and NCI-H1229 cells: synergism with cisplatin. RSC Advances, 2015, 5, 7874-7879.	1.7	11
36	Cytotoxic Titanium(IV) Complexes of Chiral Diaminobis(phenolato) Ligands: Better Combination of Activity and Stability by the Bipyrrolidine Moiety. European Journal of Inorganic Chemistry, 2014, 2014, 1485-1491.	1.0	28

3

#	Article	IF	CITATIONS
37	C1-Symmetrical Titanium(IV) Complexes of Salan Ligands with Differently Substituted Aromatic Rings: Enhanced Cytotoxic Activity. Inorganic Chemistry, 2014, 53, 3170-3176.	1.9	43
38	Antiâ€proliferative Activity of Nanoâ€Formulated Phenolato Titanium(IV) Complexes Against Cancer Cells. ChemMedChem, 2014, 9, 1294-1298.	1.6	30
39	Heteroleptic titanium(<scp>iv</scp>) catecholato/piperazine systems and their anti-cancer properties. Dalton Transactions, 2014, 43, 1380-1385.	1.6	14
40	Quantification of the titanium content in metallodrug-exposed tumor cells using HR-CS AAS. Metallodrugs, 2014, 1, 1-9.	1.7	9
41	A comparative chemical–biological evaluation of titanium(iv) complexes with a salan or cyclopentadienyl ligand. Chemical Communications, 2013, 49, 4785.	2.2	55
42	Peptide Models of Cu(I) and Zn(II) Metallochaperones: The Effect of pH on Coordination and Mechanistic Implications. Inorganic Chemistry, 2013, 52, 2993-3000.	1.9	9
43	Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D ¹ H NMR. Journal of Visualized Experiments, 2013, , e50747.	0.2	2
44	Anticancer Metal Complexes: Synthesis and Cytotoxicity Evaluation by the MTT Assay. Journal of Visualized Experiments, 2013, , e50767.	0.2	27
45	Highly cytotoxic vanadium(v) complexes of salan ligands; insights on the role of hydrolysis. Dalton Transactions, 2012, 41, 5241.	1.6	47
46	Rücktitelbild: High Antitumor Activity of Highly Resistant Salan-Titanium(IV) Complexes in Nanoparticles: An Identified Active Species (Angew. Chem. 42/2012). Angewandte Chemie, 2012, 124, 10828-10828.	1.6	0
47	High Antitumor Activity of Highly Resistant Salan–Titanium(IV) Complexes in Nanoparticles: An Identified Active Species. Angewandte Chemie - International Edition, 2012, 51, 10515-10517.	7.2	47
48	Cytotoxicity and Hydrolysis of <i>trans</i> -Ti(IV) Complexes of Salen Ligands: Structure–Activity Relationship Studies. Inorganic Chemistry, 2012, 51, 1796-1804.	1.9	43
49	Cytotoxic Salan–Titanium(IV) Complexes: High Activity Toward a Range of Sensitive and Drugâ€Resistant Cell Lines, and Mechanistic Insights. ChemMedChem, 2012, 7, 703-708.	1.6	47
50	The MXCXXC class of metallochaperone proteins: model studies. Chemical Society Reviews, 2011, 40, 5282.	18.7	16
51	NMR characterization of a Cu(i)-bound peptide model of copper metallochaperones: Insights on the role of methionine. Chemical Communications, 2011, 47, 6407.	2.2	7
52	Trans Titanium(IV) Complexes of Salen Ligands Exhibit High Antitumor Activity. Inorganic Chemistry, 2011, 50, 7946-7948.	1.9	46
53	New Insights on the Active Species and Mechanism of Cytotoxicity of Salan-Ti(IV) Complexes: A Stereochemical Study. Inorganic Chemistry, 2011, 50, 10284-10291.	1.9	38
54	Major impact of N-methylation on cytotoxicity and hydrolysis of salan Ti(IV) complexes: sterics and electronics are intertwined. Dalton Transactions, 2011, 40, 9802.	1.6	39

#	Article	IF	Citations
55	Different <i>ortho</i> and <i>para</i> Electronic Effects on Hydrolysis and Cytotoxicity of Diamino Bis(Phenolato) "Salan―Ti(IV) Complexes. Inorganic Chemistry, 2011, 50, 1030-1038.	1.9	90
56	A Marked Synergistic Effect in Antitumor Activity of Salan Titanium(IV) Complexes Bearing Two Differently Substituted Aromatic Rings. Journal of the American Chemical Society, 2011, 133, 16812-16814.	6.6	53
57	TilV Complexes of Branched Diamine Bis(phenolato) Ligands: Hydrolysis and Cytotoxicity. European Journal of Inorganic Chemistry, 2011, 2011, 4896-4900.	1.0	29
58	Unexpected Influence of Stereochemistry on the Cytotoxicity of Highly Efficient Ti ^{IV} Salan Complexes: New Mechanistic Insights. Chemistry - A European Journal, 2011, 17, 14094-14103.	1.7	35
59	Markedly different cytotoxicity of the two enantiomers of C ₂ -symmetrical Ti(iv) phenolato complexes; mechanistic implications. Dalton Transactions, 2010, 39, 1182-1184.	1.6	30
60	Synthesis, Characterization, Cytotoxicity, and Hydrolytic Behavior of <i>C</i> ₂ ―and <i>C</i> ₁ â€5ymmetrical Ti ^{IV} Complexes of Tetradentate Diamine Bis(Phenolato) Ligands: A New Class of Antitumor Agents. Chemistry - A European Journal, 2009, 15, 2403-2415.	1.7	88
61	Cytotoxic Titanium(IV) Complexes: Renaissance. European Journal of Inorganic Chemistry, 2009, 2009, 2203-2218.	1.0	93
62	Modern cytotoxic titanium(IV) complexes; Insights on the enigmatic involvement of hydrolysis. Coordination Chemistry Reviews, 2009, 253, 2098-2115.	9.5	114
63	Preparation and Xâ€ray Structures of Ti ^{IV} Complexes of Bis(carboxylato) Ligands – Formation of Monoâ€, Diâ€, Tetraâ€, and Hexanuclear Complexes with or without OR and μâ€O Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 1467-1474.	1.0	28
64	Preparation and X-ray characterization of two-coordinate Cu(I) complex of aliphatic thiolato ligand: Effect of steric bulk on coordination features. Journal of Organometallic Chemistry, 2008, 693, 2065-2068.	0.8	17
65	Structural characterization of dinuclear Ti(IV) complexes of rigid tetradentate dianionic diamine bis(phenolato) ligands; effect of steric bulk on coordination features. Journal of Organometallic Chemistry, 2008, 693, 3947-3950.	0.8	21
66	Synthesis and Conformational Analysis of Constrained Ethylene-Bridged Bis(hydroxylamino-1,3,5-triazine) Compounds as Tetradentate Ligands; Structure of Rigid Dinuclear Ti(IV) Complex. Journal of Organic Chemistry, 2008, 73, 5953-5958.	1.7	15
67	Active Cytotoxic Reagents Based on Non-metallocene Non-diketonato Well-Defined <i>C</i> ₂ -Symmetrical Titanium Complexes of Tetradentate Bis(phenolato) Ligands. Journal of the American Chemical Society, 2007, 129, 12098-12099.	6.6	99
68	Synthesis and X-ray Characterization of Mono- and Polynuclear Thiolatocopper(I) Complexes: The Effect of Steric Bulk on Coordination Number and Nuclearity. European Journal of Inorganic Chemistry, 2007, 2007, 5369-5376.	1.0	28
69	Antitumor reactivity of non-metallocene titanium complexes of oxygen-based ligands: is ligand lability essential?. Journal of Biological Inorganic Chemistry, 2007, 12, 825-830.	1.1	33
70	Distinctive structural features of hydroxyamino-1,3,5-triazine ligands leading to enhanced hydrolytic stability of their titanium complexes. Dalton Transactions, 2006, , 4169.	1.6	15
71	Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. ChemInform, 2004, 35, no.	0.1	0
72	Diverse Structureâ^'Activity Trends in Amine Bis(phenolate) Titanium Polymerization Catalysts. Organometallics, 2004, 23, 5291-5299.	1.1	69

#	Article	IF	Citations
73	Catalytic Oxidative Ring Opening of THF Promoted by a Carboxylate-Bridged Diiron Complex, Triarylphosphines, and Dioxygen. Inorganic Chemistry, 2004, 43, 4427-4434.	1.9	49
74	Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins:Â Strategies and Tactics. Chemical Reviews, 2004, 104, 987-1012.	23.0	619
75	Complexes of Amine Phenolate Ligands as Catalysts for Polymerization of $\hat{l}\pm$ -Olefin. ACS Symposium Series, 2003, , 62-75.	0.5	8
76	Catalytic Oxidation by a Carboxylate-Bridged Non-Heme Diiron Complex. Journal of the American Chemical Society, 2002, 124, 2416-2417.	6.6	52
77	High Molecular Weight Atactic Polypropylene prepared by Zirconium Complexes of an Amine Bis(phenolate) Ligand. Israel Journal of Chemistry, 2002, 42, 373-381.	1.0	20
78	[ONXO]-Type Amine Bis(phenolate) Zirconium and Hafnium Complexes as Extremely Active 1-Hexene Polymerization Catalysts. Organometallics, 2002, 21, 662-670.	1,1	205
79	Coordination Chemistry of Amine Bis(phenolate) Titanium Complexes:Â Tuning Complex Type and Structure by Ligand Modification. Inorganic Chemistry, 2001, 40, 4263-4270.	1.9	98
80	Living polymerization and block copolymerization of alpha-olefins by an amine bis(phenolate) titanium catalyst. Chemical Communications, 2001, , 2120-2121.	2.2	87
81	Zirconium Complexes of Amineâ^'Bis(phenolate) Ligands as Catalysts for 1-Hexene Polymerization:Â Peripheral Structural Parameters Strongly Affect Reactivity. Organometallics, 2001, 20, 3017-3028.	1.1	259
82	Single-step synthesis of salans and substituted salans by Mannich condensation. Tetrahedron Letters, 2001, 42, 6405-6407.	0.7	71
83	Living polymerization of 1-hexene due to an extra donor arm on a novel amine bis(phenolate) titanium catalyst. Inorganic Chemistry Communication, 2000, 3, 611-614.	1.8	78
84	Isospecific Living Polymerization of 1-Hexene by a Readily Available NonmetalloceneC2-Symmetrical Zirconium Catalyst. Journal of the American Chemical Society, 2000, 122, 10706-10707.	6.6	424
85	Novel zirconium complexes of amine bis(phenolate) ligands. Remarkable reactivity in polymerization of hex-1-ene due to an extra donor arm. Chemical Communications, 2000, , 379-380.	2.2	128
86	Titanium complexes of chelating dianionic amine bis(phenolate) ligands: an extra donor makes a big difference. Inorganic Chemistry Communication, 1999, 2, 371-373.	1.8	95