Sohyun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11739410/publications.pdf

Version: 2024-02-01

623734 677142 22 967 14 22 citations g-index h-index papers 22 22 22 987 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	17.4	303
2	K ⁺ intercalated V ₂ O ₅ nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20335-20347.	10.3	116
3	In Situ Oriented Mn Deficient ZnMn ₂ O ₄ @C Nanoarchitecture for Durable Rechargeable Aqueous Zinc″on Batteries. Advanced Science, 2021, 8, 2002636.	11.2	90
4	High rate performance of a NaTi ₂ (PO ₄) ₃ /rGO composite electrode via pyro synthesis for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 7815-7822.	10.3	60
5	Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chemical Engineering Journal, 2021, 422, 130052.	12.7	58
6	Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Research, 2019, 12, 911-917.	10.4	38
7	Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Communications Chemistry, 2018, $1,\dots$	4.5	37
8	An Enhanced High-Rate Na ₃ V ₂ (PO ₄) ₃ -Ni ₂ P Nanocomposite Cathode with Stable Lifetime for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35235-35242.	8.0	35
9	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy and Environmental Science, 2021, 14, 5864-5874.	30.8	30
10	A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte. Energy Storage Materials, 2019, 19, 270-280.	18.0	29
11	C-Na3V1.96Fe0.04(PO4)3/Fe2P nanoclusters with stable charge-transfer interface for high-power sodium ion batteries. Chemical Engineering Journal, 2021, 404, 126974.	12.7	25
12	Quasi-solid-state zinc-ion battery based on α-MnO2 cathode with husk-like morphology. Electrochimica Acta, 2020, 345, 136189.	5.2	24
13	Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16376-16386.	8.0	22
14	Uniform Carbon Coated Na ₃ V ₂ (PO ₄) ₂ O _{2<i>x</i>} F _{3â€"2<i>x</i>} Nanoparticles for Sodium Ion Batteries as Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 18826-18834.	/sub>	16
15	Investigation of superior sodium storage and reversible Na ₂ S conversion reactions in a	10.3	14
16	One step pyro-synthesis process of nanostructured Li3V2(PO4)3/C cathode for rechargeable Li-ion batteries. Materials Today Communications, 2017, 10, 105-111.	1.9	13
17	One-pot pyro synthesis of a nanosized-LiMn ₂ O ₄ /C cathode with enhanced lithium storage properties. RSC Advances, 2019, 9, 24030-24038.	3.6	12
18	One-pot pyro-synthesis of a high energy density LiFePO 4 -Li $3V2$ (PO 4) 3 nanocomposite cathode for lithium-ion battery applications. Ceramics International, 2017, 43, 4288-4294.	4.8	11

SOHYUN PARK

#	Article	IF	CITATION
19	Sodium manganese oxide electrodes accompanying self-ion exchange for lithium/sodium hybrid ion batteries. Electrochimica Acta, 2018, 261, 42-48.	5.2	10
20	High-voltage cathode materials by combustion-based preparative approaches for Li-ion batteries application. Journal of Power Sources, 2020, 472, 228368.	7.8	10
21	Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability. Journal of the Korean Ceramic Society, 2016, 53, 406-410.	2.3	8
22	A new telluriumâ€based Ni ₃ TeO ₆ â€carbon nanotubes composite anode for Naâ€ion battery. International Journal of Energy Research, 2022, 46, 16041-16049.	4.5	6