Takumi Chinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11739208/publications.pdf Version: 2024-02-01

TAKUMI CHINEN

#	Article	IF	CITATIONS
1	Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. Journal of Cell Biology, 2021, 220, .	5.2	21
2	Traminines A and B, produced by <i>Fusarium concentricum</i> , inhibit oxidative phosphorylation in <i>Saccharomyces cerevisiae</i> mitochondria. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	4
3	Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle. Journal of Cell Biology, 2021, 220, .	5.2	10
4	Nu <scp>MA</scp> assemblies organize microtubule asters toÂestablish spindle bipolarity in acentrosomal human cells. EMBO Journal, 2020, 39, e102378.	7.8	97
5	The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression. Journal of Cell Science, 2020, 133, .	2.0	6
6	Mechanisms of spindle bipolarity establishment in acentrosomal human cells. Molecular and Cellular Oncology, 2020, 7, 1743899.	0.7	3
7	Structure Optimization of Gatastatin for the Development of γ-Tubulin-Specific Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 1125-1129.	2.8	5
8	Centrosomal and Non-centrosomal Functions Emerged through Eliminating Centrosomes. Cell Structure and Function, 2020, 45, 57-64.	1.1	8
9	Dual Inhibition of Î ³ -Tubulin and Plk1 Induces Mitotic Cell Death. Frontiers in Pharmacology, 2020, 11, 620185.	3.5	4
10	Pyrenocine A induces monopolar spindle formation and suppresses proliferation of cancer cells. Bioorganic and Medicinal Chemistry, 2019, 27, 115149.	3.0	8
11	Fusaramin, an antimitochondrial compound produced by Fusarium sp., discovered using multidrug-sensitive Saccharomyces cerevisiae. Journal of Antibiotics, 2019, 72, 645-652.	2.0	13
12	Multidrug Sensitive Yeast Strains, Useful Tools for Chemical Genetics. , 2018, , .		1
13	Pestiocandin, a new papulacandin class antibiotic isolated from Pestalotiopsis humus. Journal of Antibiotics, 2018, 71, 1031-1035.	2.0	8
14	Pestynol, an Antifungal Compound Discovered Using a <i>Saccharomyces cerevisiae</i> 12genel "OHSR-iERG6-Based Assay. Journal of Natural Products, 2018, 81, 1604-1609.	3.0	13
15	Eudistomin C, an Antitumor and Antiviral Natural Product, Targets 40S Ribosome and Inhibits Protein Translation. ChemBioChem, 2016, 17, 1616-1620.	2.6	13
16	Discovery of O6-benzyl glaziovianin A, a potent cytotoxic substance and a potent inhibitor of α,β-tubulin polymerization. Bioorganic and Medicinal Chemistry, 2016, 24, 5639-5645.	3.0	10
17	Total Synthesis and Biological Evaluation of Irciniastatin A (a.k.a. Psymberin) and Irciniastatin B. Journal of Organic Chemistry, 2015, 80, 12333-12350.	3.2	22
18	The Î ³ -tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nature Communications, 2015, 6, 8722.	12.8	47

TAKUMI CHINEN

#	Article	IF	CITATIONS
19	Construction of a genetic analysis-available multidrug sensitive yeast strain by disruption of the drug efflux system and conditional repression of the membrane barrier system. Journal of General and Applied Microbiology, 2014, 60, 160-162.	0.7	9
20	Terpendole E and its Derivative Inhibit STLC―and GSKâ€1â€Resistant Eg5. ChemBioChem, 2014, 15, 934-938.	2.6	23
21	Development of a New Benzophenone–Diketopiperazine-Type Potent Antimicrotubule Agent Possessing a 2-Pyridine Structure. ACS Medicinal Chemistry Letters, 2014, 5, 1094-1098.	2.8	33
22	Glaziovianin A Prevents Endosome Maturation <i>via</i> Inhibiting Microtubule Dynamics. ACS Chemical Biology, 2013, 8, 884-889.	3.4	18
23	Synthesis and structure–activity relationships of benzophenone-bearing diketopiperazine-type anti-microtubule agents. Bioorganic and Medicinal Chemistry, 2012, 20, 4279-4289.	3.0	40
24	Design, synthesis, and biological evaluation of the analogues of glaziovianin A, a potent antitumor isoflavone. Bioorganic and Medicinal Chemistry, 2012, 20, 5745-5756.	3.0	20
25	Synthesis and Structure–Activity Relationship Study of Antimicrotubule Agents Phenylahistin Derivatives with a Didehydropiperazine-2,5-dione Structure. Journal of Medicinal Chemistry, 2012, 55, 1056-1071.	6.4	88
26	Construction of Multidrug-Sensitive Yeast with High Sporulation Efficiency. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1588-1593.	1.3	24
27	Syntheses and Biological Evaluation of Irciniastatin A and the C1â^ C2 Alkyne Analogue. Organic Letters, 2010, 12, 1040-1043.	4.6	52
28	Irciniastatin A induces JNK activation that is involved in caspase-8-dependent apoptosis via the mitochondrial pathway. Toxicology Letters, 2010, 199, 341-346.	0.8	32