Lars Frelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173919/publications.pdf

Version: 2024-02-01

516561 454834 40 917 16 30 h-index citations g-index papers 42 42 42 1377 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Blocking Entry of Hepatitis B and D Viruses to Hepatocytes as a Novel Immunotherapy for Treating Chronic Infections. Journal of Infectious Diseases, 2021, 223, 128-138.	1.9	10
2	The SARS-CoV-2 N Protein Is a Good Component in a Vaccine. Journal of Virology, 2020, 94, .	1.5	35
3	Expansion of SARS-CoV-2–Specific Antibody-Secreting Cells and Generation of Neutralizing Antibodies in Hospitalized COVID-19 Patients. Journal of Immunology, 2020, 205, 2437-2446.	0.4	79
4	Immune-mediated effects targeting hepatitis C virus in a syngeneic replicon cell transplantation mouse model. Gut, 2018, 67, 1525-1535.	6.1	5
5	Neonatal Exposure to Hepatitis C Virus Antigens in Uninfected Children Born to Infected Mothers. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, 106-111.	0.9	2
6	Hepatitis C Virus-Specific T Cell Receptor mRNA-Engineered Human T Cells: Impact of Antigen Specificity on Functional Properties. Journal of Virology, 2017, 91, .	1.5	13
7	Lack of Association Between Interleukin 28B Polymorphism and Vertical Transmission of Hepatitis C. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, 608-612.	0.9	1
8	A targeted controlled force injection of genetic material in vivo. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16016.	1.8	7
9	Methods to Evaluate Novel Hepatitis C Virus Vaccines. Methods in Molecular Biology, 2016, 1403, 221-244.	0.4	9
10	Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses. Scientific Reports, 2016, 6, 24991.	1.6	0
11	A non-human hepadnaviral adjuvant for hepatitis C virus-based genetic vaccines. Vaccine, 2016, 34, 2821-2833.	1.7	8
12	Prospects and progress of DNA vaccines for treating hepatitis B. Expert Review of Vaccines, 2016, 15, 629-640.	2.0	5
13	Hepatitis C Virus Nonstructural 3/4A Protein Dampens Inflammation and Contributes to Slow Fibrosis Progression during Chronic Fibrosis In Vivo. PLoS ONE, 2015, 10, e0128466.	1.1	7
14	Electroporation for therapeutic DNA vaccination in patients. Medical Microbiology and Immunology, 2015, 204, 131-135.	2.6	25
15	Functional Aspects of Intrahepatic Hepatitis B Virus-specific T Cells Induced by Therapeutic DNA Vaccination. Molecular Therapy, 2015, 23, 578-590.	3.7	13
16	Non-structural 3 protein expression is associated with T cell protein tyrosine phosphatase and viral RNA levels in chronic hepatitis C patients. Biochemical and Biophysical Research Communications, 2013, 433, 31-35.	1.0	5
17	Containing "The Great Houdini―of viruses: Combining direct acting antivirals with the host immune response for the treatment of chronic hepatitis C. Drug Resistance Updates, 2013, 16, 60-67.	6.5	15
18	A Synthetic Codon-Optimized Hepatitis C Virus Nonstructural 5A DNA Vaccine Primes Polyfunctional CD8+ T Cell Responses in Wild-Type and NS5A-Transgenic Mice. Journal of Immunology, 2013, 190, 1113-1124.	0.4	11

#	Article	IF	CITATIONS
19	Methods for Monitoring Gene Gun-Induced HBV- and HCV-Specific Immune Responses in Mouse Models. Methods in Molecular Biology, 2013, 940, 239-267.	0.4	6
20	A Heterologous Prime/Boost Vaccination Strategy Enhances the Immunogenicity of Therapeutic Vaccines for Hepatitis C Virus. Journal of Infectious Diseases, 2013, 208, 1008-1019.	1.9	42
21	Therapeutic DNA Vaccination Using In Vivo Electroporation Followed by Standard of Care Therapy in Patients With Genotype 1 Chronic Hepatitis C. Molecular Therapy, 2013, 21, 1796-1805.	3.7	62
22	Hepatitis C virus non-structural 3/4A protein interferes with intrahepatic interferon- \hat{l}^3 production. Gut, 2012, 61, 589-596.	6.1	13
23	Limited effect on NS3–NS4A protein cleavage after alanine substitutions within the immunodominant HLA-A2-restricted epitope of the hepatitis C virus genotype 3a non-structural 3/4A protease. Journal of General Virology, 2012, 93, 1680-1686.	1.3	0
24	TCR-Redirected Human T Cells Inhibit Hepatitis C Virus Replication: Hepatotoxic Potential Is Linked to Antigen Specificity and Functional Avidity. Journal of Immunology, 2012, 189, 4510-4519.	0.4	24
25	A bi-functional hepatitis B virus core antigen (HBcAg) chimera activates HBcAg-specific T cells and preS1-specific antibodies. Scandinavian Journal of Infectious Diseases, 2012, 44, 55-59.	1.5	9
26	Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. Journal of General Virology, 2012, 93, 247-258.	1.3	10
27	Identification of a unique double-negative regulatory T-cell population. Immunology, 2011, 134, 434-447.	2.0	8
28	Heterologous T Cells Can Help Restore Function in Dysfunctional Hepatitis C Virus Nonstructural 3/4A-Specific T Cells during Therapeutic Vaccination. Journal of Immunology, 2011, 186, 5107-5118.	0.4	21
29	Anti-tumor necrosis factor \hat{l}_{\pm} treatment promotes apoptosis and prevents liver regeneration in a transgenic mouse model of chronic hepatitis C. Hepatology, 2010, 52, 1553-1563.	3.6	35
30	Improving on the Ability of Endogenous Hepatitis B Core Antigen to Prime Cytotoxic T Lymphocytes. Journal of Infectious Diseases, 2010, 201, 1867-1879.	1.9	17
31	Electroporation: A promising method for the nonviral delivery of DNA vaccines in humans?. Drug News and Perspectives, 2010, 23, 647.	1.9	17
32	The Hepatitis C Virus Non-structural NS5A Protein Impairs Both the Innate and Adaptive Hepatic Immune Response in Vivo. Journal of Biological Chemistry, 2009, 284, 28343-28351.	1.6	33
33	Interaction of the Hepatitis B Core Antigen and the Innate Immune System. Journal of Immunology, 2009, 182, 6670-6681.	0.4	72
34	Nonstructural 3/4A protease of hepatitis C virus activates epithelial growth factor-induced signal transduction by cleavage of the T-cell protein tyrosine phosphatase. Hepatology, 2009, 49, 1810-1820.	3.6	62
35	DNA vaccine therapy for chronic hepatitis C virus (HCV) infection: immune control of a moving target. Expert Opinion on Biological Therapy, 2009, 9, 805-815.	1.4	16
36	A small step closer to the Holy Grail of DNA vaccines: undisputed clinical benefit in humans. Genome Medicine, 2009, 1, 15.	3 . 6	4

#	Article	IF	CITATIONS
37	In Vivo Electroporation Enhances the Immunogenicity of Hepatitis C Virus Nonstructural 3/4A DNA by Increased Local DNA Uptake, Protein Expression, Inflammation, and Infiltration of CD3+ T Cells. Journal of Immunology, 2007, 179, 4741-4753.	0.4	123
38	Therapeutic vaccines: challenges of chronic viral infections. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 253-266.	0.5	3
39	In Vivo Clearance of Hepatitis C Virus Nonstructural 3/4A–Expressing Hepatocytes by DNA Vaccine–Primed Cytotoxic T Lymphocytes. Journal of Infectious Diseases, 2005, 192, 2112-2116.	1.9	47
40	Humoral and CD4+ T helper (Th) cell responses to the hepatitis C virus non-structural 3 (NS3) protein: NS3 primes Th1-like responses more effectively as a DNA-based immunogen than as a recombinant protein. Journal of General Virology, 2001, 82, 1299-1308.	1.3	32