Andor Udvardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11739016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress and Chaperones, 2016, 21, 327-338.	1.2	36
2	Role of the Deubiquitylating Enzyme DmUsp5 in Coupling Ubiquitin Equilibrium to Development and Apoptosis in Drosophila melanogaster. PLoS ONE, 2015, 10, e0120875.	1.1	21
3	Novel Method to Load Multiple Genes onto a Mammalian Artificial Chromosome. PLoS ONE, 2014, 9, e85565.	1.1	12
4	A novel interplay between the ubiquitin–proteasome system and serine proteases during <i>Drosophila</i> development. Biochemical Journal, 2013, 454, 571-583.	1.7	8
5	Ubiquitylation of <i>Drosophila</i> p54/Rpn10/S5a Regulates Its Interaction with the UBA–UBL Polyubiquitin Receptors. Biochemistry, 2012, 51, 2461-2470.	1.2	24
6	lemmingA encodes the Apc11 subunit of the APC/C in Drosophila melanogaster that forms a ternary complex with the E2-C type ubiquitin conjugating enzyme, Vihar and Morula/Apc2. Cell Division, 2012, 7, 9.	1.1	8
7	Overexpression of Dsk2/dUbqln results in severe developmental defects and lethality in <i>Drosophila melanogaster</i> that can be rescued by overexpression of the p54/Rpn10/S5a proteasomal subunit. FEBS Journal, 2011, 278, 4833-4844.	2.2	14
8	Enrichment of O-GlcNAc Modified Proteins by the Periodate Oxidationâ^'Hydrazide Resin Capture Approach. Journal of Proteome Research, 2010, 9, 2200-2206.	1.8	65
9	Developmental-stage-specific regulation of the polyubiquitin receptors in <i>Drosophila melanogaster</i> . Journal of Cell Science, 2009, 122, 3083-3092.	1.2	23
10	Structurally related TPR subunits contribute differently to the function of the anaphase-promoting complex in <i>Drosophila melanogaster</i> . Journal of Cell Science, 2007, 120, 3238-3248.	1.2	27
11	Molecular characterization of the Rpt1/p48B ATPase subunit of the Drosophila melanogaster 26S proteasome. Molecular Genetics and Genomics, 2007, 278, 17-29.	1.0	2
12	Zn2+-induced reversible dissociation of subunit Rpn10/p54 of the Drosophila 26ÂS proteasome. Biochemical Journal, 2005, 391, 301-310.	1.7	18
13	Intimate relationship between the genes of two transcriptional coactivators, ADA2a and PIMT, of Drosophila. Gene, 2005, 348, 13-23.	1.0	6
14	Tissue- and developmental stage-specific changes in the subcellular localization of the 26S proteasome in the ovary of Drosophila melanogaster. Gene Expression Patterns, 2004, 4, 329-333.	0.3	12
15	26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2003, 312, 1284-1289.	1.0	78
16	Different isoforms of PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase localizes to the cytoplasm and nucleus. Biochemical and Biophysical Research Communications, 2003, 309, 44-51.	1.0	24
17	Two Different Drosophila ADA2 Homologues Are Present in Distinct GCN5 Histone Acetyltransferase-Containing Complexes. Molecular and Cellular Biology, 2003, 23, 306-321.	1.1	84
18	Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes inDrosophila melanogaster. Journal of Cell Science, 2003, 116, 1023-1033.	1.2	68

ANDOR UDVARDY

#	Article	IF	CITATIONS
19	Assembly of the Drosophila 26ÂS proteasome is accompanied by extensive subunit rearrangements. Biochemical Journal, 2002, 365, 527-536.	1.7	34
20	The Regulatory Complex of Drosophila melanogaster 26s Proteasomes. Journal of Cell Biology, 2000, 150, 119-130.	2.3	138
21	The <i>Ketel</i> Gene Encodes a Drosophila Homologue of Importin-β. Genetics, 2000, 156, 1889-1900.	1.2	50
22	Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of theDrosophila26S protease. FEBS Letters, 1997, 412, 331-336.	1.3	44
23	Dissection of the Regulator Complex of theDrosophila26S Protease by Limited Proteolysis. Biochemical and Biophysical Research Communications, 1996, 220, 166-170.	1.0	11
24	The Role of Controlled Proteolysis in Cell-Cycle Regulation. FEBS Journal, 1996, 240, 307-313.	0.2	35
25	The role of controlled proteolysis in cell-cycle regulation. , 1996, , 195-201.		Ο
26	Cloning and Sequencing a Non-ATPase Subunit of the Regulatory Complex of the Drosophila 26S Protease. FEBS Journal, 1995, 231, 720-725.	0.2	0
27	Cloning and Sequencing a Non-ATPase Subunit of the Regulatory Complex of the Drosophila 26S Protease. FEBS Journal, 1995, 231, 720-725.	0.2	59
28	S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature, 1993, 366, 358-362.	13.7	441
29	Z-DNA binding and inhibition by GTP of Drosophila topoisomerase II. Biochemistry, 1993, 32, 4862-4872.	1.2	35
30	Molecular characterization of the 5′ end of therudimentarygene inDrosophilaand analysis of three P element insertions. Nucleic Acids Research, 1992, 20, 4639-4647.	6.5	3
31	Sequence of scs and scs′DrosophilaDNA fragments with boundary function in the control of gene expression. Nucleic Acids Research, 1992, 20, 2604-2604.	6.5	19
32	Intracellular forms ofDrosophilatopoisomerase II detected with monoclonal antibodies. Nucleic Acids Research, 1988, 16, 10013-10023.	6.5	14
33	Sequence dependence of Drosophila topoisomerase II in plasmid relaxation and DNA binding. Journal of Molecular Biology, 1987, 194, 219-229.	2.0	58
34	The 87A7 chromomere. Journal of Molecular Biology, 1985, 185, 341-358.	2.0	247
35	Chromatin structure of the 87A7 heat-shock locus during heat induction and recovery from heat shock. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1985, 825, 154-160.	2.4	7
36	Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II. Cell, 1985, 40, 933-941.	13.5	109

ANDOR UDVARDY

#	Article	IF	CITATIONS
37	Neurospora crassa and S1 nuclease cleavage in hsp 83 gene chromatin. Journal of Molecular Biology, 1985, 184, 657-665.	2.0	4
38	Novobiocin blocks the Drosophila heat shock response. Journal of Molecular Biology, 1985, 183, 13-29.	2.0	78
39	Chromatin organization of the 87A7 heat shock locus of Drosophila melanogaster. Journal of Molecular Biology, 1984, 172, 385-403.	2.0	60
40	Transcriptionally active chromatin is sensitive to Neurospora crassa and S1 nucleases. Journal of Molecular Biology, 1984, 179, 469-496.	2.0	31
41	Ribosomal RNA genes of Drosophila melanogaster have a novel chromatin structure. Journal of Molecular Biology, 1984, 175, 113-130.	2.0	24
42	Structural polymorphism in DNA. Journal of Molecular Biology, 1983, 166, 159-181.	2.0	12
43	Identification of two new promoters probably involved in the transcription of a ribosomal RNA gene of Escherichia coli. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1983, 739, 173-180.	2.4	29
44	Chromatin fine structure of the histone gene complex ofDrosophila melanogaster. Nucleic Acids Research, 1983, 11, 421-440.	6.5	65
45	Evolutionary implications of a complex pattern of DNA sequence homology extending far upstream of the hsp70 genes at loci 87A7 and 87C1 in Drosophila melanogaster. Journal of Molecular Biology, 1982, 156, 21-35.	2.0	47
46	Genomic organization and functional analysis of a deletion variant of the 87A7 heat shock locus of Drosophila melanogaster. Journal of Molecular Biology, 1982, 155, 267-280.	2.0	25
47	Cloning of mtDNA fragments homologous to mitochondrial S2 plasmid-like DNA in maize. Molecular Genetics and Genomics, 1981, 183, 449-458.	2.4	16
48	RNA-polymerase binding at the promoters of the rRNA genes of Escherichia coli. Nucleic Acids and Protein Synthesis, 1980, 609, 435-447.	1.7	9
49	Cloning of an E. coli ribosomal RNA gene and its promoter region from. Gene, 1978, 4, 137-152.	1.0	15
50	In vitro transcription of ribosomal RNA on phage λrifd 18 DNA. Nucleic Acids and Protein Synthesis, 1978, 518, 257-266.	1.7	9
51	In vitro transcription of the ribosomal RNA genes of E. coli DNA. Molecular Genetics and Genomics, 1977, 151, 305-312.	2.4	20
52	Tight binding of RNA polymerase to rDNA genes in E. coli. Nature, 1974, 249, 548-550.	13.7	4
53	Reconstruction of Double-Stranded Bacterial rDNA from the Partially Purified Complementary Strands. FEBS Journal, 1973, 38, 587-592.	0.2	1
54	Isolation of the Ribosomal RNA Genes of Salmonella typhimurium. FEBS Journal, 1971, 20, 513-517.	0.2	10