Pritiraj Mohanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11738581/publications.pdf

Version: 2024-02-01

47 papers

2,040 citations

293460 24 h-index 263392 45 g-index

48 all docs

48 docs citations

48 times ranked

2471 citing authors

#	Article	IF	CITATIONS
1	Measurement of nonlinear piezoelectric coefficients using a micromechanical resonator. Applied Physics Letters, 2018, 113, 083501.	1.5	1
2	Micromechanical resonator with dielectric nonlinearity. Microsystems and Nanoengineering, 2018, 4, 14.	3.4	5
3	Autoassociative Memory and Pattern Recognition in Micromechanical Oscillator Network. Scientific Reports, 2017, 7, 411.	1.6	27
4	Micromechanical microphone using sideband modulation of nonlinear resonators. Applied Physics Letters, 2017, 111 , .	1.5	3
5	Optical wireless information transfer with nonlinear micromechanical resonators. Microsystems and Nanoengineering, 2017, 3, 17026.	3.4	8
6	Micromechanical Resonator Driven by Radiation Pressure Force. Scientific Reports, 2017, 7, 16056.	1.6	8
7	Wireless actuation of bulk acoustic modes in micromechanical resonators. Applied Physics Letters, 2016, 109, 073502.	1.5	4
8	Sensing of the Melanoma Biomarker TROY Using Silicon Nanowire Field-Effect Transistors. ACS Sensors, 2016, 1, 696-701.	4.0	12
9	Wireless actuation of micromechanical resonators. Microsystems and Nanoengineering, 2016, 2, 16036.	3.4	6
10	Dissipation in nanoelectromechanical systems. Physics Reports, 2014, 534, 89-146.	10.3	198
10	Dissipation in nanoelectromechanical systems. Physics Reports, 2014, 534, 89-146. A Nanomechanical Fredkin Gate. Nano Letters, 2014, 14, 89-93.	10.3	198 78
11	A Nanomechanical Fredkin Gate. Nano Letters, 2014, 14, 89-93. CHAPTER 17. Diamond Nano-electromechanical Systems. RSC Nanoscience and Nanotechnology, 2014, ,	4.5	78
11 12	A Nanomechanical Fredkin Gate. Nano Letters, 2014, 14, 89-93. CHAPTER 17. Diamond Nano-electromechanical Systems. RSC Nanoscience and Nanotechnology, 2014, , 411-447. Observation of Nonlinear Dissipation in Piezoresistive Diamond Nanomechanical Resonators by	4.5 0.2	78
11 12 13	A Nanomechanical Fredkin Gate. Nano Letters, 2014, 14, 89-93. CHAPTER 17. Diamond Nano-electromechanical Systems. RSC Nanoscience and Nanotechnology, 2014, , 411-447. Observation of Nonlinear Dissipation in Piezoresistive Diamond Nanomechanical Resonators by Heterodyne Down-Mixing. Nano Letters, 2013, 13, 4014-4019. Nonlinear dissipation in diamond nanoelectromechanical resonators. Applied Physics Letters, 2013,	4.5 0.2 4.5	78 2 34
11 12 13 14	A Nanomechanical Fredkin Gate. Nano Letters, 2014, 14, 89-93. CHAPTER 17. Diamond Nano-electromechanical Systems. RSC Nanoscience and Nanotechnology, 2014, , 411-447. Observation of Nonlinear Dissipation in Piezoresistive Diamond Nanomechanical Resonators by Heterodyne Down-Mixing. Nano Letters, 2013, 13, 4014-4019. Nonlinear dissipation in diamond nanoelectromechanical resonators. Applied Physics Letters, 2013, 102, . Tunable nanowire Wheatstone bridge for improved sensitivity in molecular recognition. Applied	4.5 0.2 4.5	78 2 34 43
11 12 13 14	A Nanomechanical Fredkin Gate. Nano Letters, 2014, 14, 89-93. CHAPTER 17. Diamond Nano-electromechanical Systems. RSC Nanoscience and Nanotechnology, 2014, , 411-447. Observation of Nonlinear Dissipation in Piezoresistive Diamond Nanomechanical Resonators by Heterodyne Down-Mixing. Nano Letters, 2013, 13, 4014-4019. Nonlinear dissipation in diamond nanoelectromechanical resonators. Applied Physics Letters, 2013, 102, . Tunable nanowire Wheatstone bridge for improved sensitivity in molecular recognition. Applied Physics Letters, 2013, 102, . Energy measurement in nonlinearly coupled nanomechanical modes. Applied Physics Letters, 2011, 98,	4.5 0.2 4.5 1.5	78 2 34 43 7

#	Article	IF	CITATIONS
19	Evidence of universality in the dynamical response of micromechanical diamond resonators at millikelvin temperatures. Physical Review B, 2009, 79, .	1.1	31
20	Nanoelectromechanical system-integrated detector with silicon nanomechanical resonator and silicon nanochannel field effect transistor. Journal of Applied Physics, 2009, 105, 094308.	1.1	2
21	Signal Amplification by 1/ <i>f</i> Noise in Silicon-Based Nanomechanical Resonators. Nano Letters, 2009, 9, 3096-3099.	4.5	21
22	Quantum Nanomechanics. Understanding Complex Systems, 2009, , 25-36.	0.3	0
23	Surface-modified silicon nano-channel for urea sensing. Sensors and Actuators B: Chemical, 2008, 133, 593-598.	4.0	32
24	Nanomechanical detection of itinerant electron spin flip. Nature Nanotechnology, 2008, 3, 720-723.	15.6	81
25	Electrostatically actuated silicon-based nanomechanical switch at room temperature. Applied Physics Letters, 2008, 93, .	1.5	47
26	Silicon-based nanochannel glucose sensor. Applied Physics Letters, 2008, 92, 013903.	1.5	48
27	Measurement of Aharonov-Bohm oscillations in mesoscopic metallic rings in the presence of a high-frequency electromagnetic field. Physical Review B, 2008, 77, .	1.1	2
28	Scaling of dissipation in megahertz-range micromechanical diamond oscillators. Applied Physics Letters, 2007, 90, 173502.	1.5	42
29	Nanoscale field effect transistor for biomolecular signal amplification. Applied Physics Letters, 2007, 91, 243511.	1.5	16
30	Synchronized Oscillation in Coupled Nanomechanical Oscillators. Science, 2007, 316, 95-99.	6.0	222
31	High quality factor gigahertz frequencies in nanomechanical diamond resonators. Applied Physics Letters, 2007, 91, .	1.5	79
32	Micromechanical resonators fabricated from lattice-matched and etch-selective GaAsâ^•InGaPâ^•GaAs heterostructures. Applied Physics Letters, 2007, 91, 133505.	1.5	19
33	Electron coherence at low temperatures: The role of magnetic impurities. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 40, 12-24.	1.3	24
34	Silicon-based nanoelectronic field-effect pH sensor with local gate control. Applied Physics Letters, 2006, 89, 223512.	1.5	103
35	Dynamical Response of Nanomechanical Oscillators in Immiscible Viscous Fluid forInÂVitroBiomolecular Recognition. Physical Review Letters, 2006, 96, 186105.	2.9	59
36	Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature, 2005, 437, 995-998.	13.7	254

#	Article	IF	CITATIONS
37	Quantum friction in nanomechanical oscillators at millikelvin temperatures. Physical Review B, 2005, 72, .	1.1	51
38	Temperature dependence of a nanomechanical switch. Applied Physics Letters, 2005, 86, 023106.	1.5	25
39	Spectral response of a gigahertz-range nanomechanical oscillator. Applied Physics Letters, 2005, 86, 254103.	1.5	24
40	Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators. Physical Review Letters, 2005, 94, 030402.	2.9	94
41	A controllable nanomechanical memory element. Applied Physics Letters, 2004, 85, 3587-3589.	1.5	136
42	Quantum Friction of Micromechanical Resonators at Low Temperatures. Physical Review Letters, 2003, 90, 085504.	2.9	29
43	Anomalous Conductance Distribution in Quasi-One-Dimensional Gold Wires: Possible Violation of the One-Parameter Scaling Hypothesis. Physical Review Letters, 2002, 88, 146601.	2.9	35
44	Dephasing of electrons by two-level defects in quantum dots. Physical Review B, 2001, 63, .	1.1	6
45	Notes on decoherence at absolute zero. Physica B: Condensed Matter, 2000, 280, 446-452.	1.3	26
46	Measurement of small forces in micron-sized resonators. Physica B: Condensed Matter, 2000, 284-288, 2143-2144.	1.3	23
47	Energy dissipation in suspended micromechanical resonators at low temperatures. Physica B: Condensed Matter, 2000, 284-288, 2145-2146.	1.3	36