Yuanmiao Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11737983/yuanmiao-sun-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32	1,938	24	33
papers	citations	h-index	g-index
33	2,951 ext. citations	15.7	5.28
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
32	Facile synthesis of palladium incorporated NiCo2O4 spinel for low temperature methane combustion: Activate lattice oxygen to promote activity. <i>Journal of Catalysis</i> , 2021 ,	7.3	3
31	Spin-polarized oxygen evolution reaction under magnetic field. <i>Nature Communications</i> , 2021 , 12, 2608	17.4	52
30	A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. <i>JPhys Energy</i> , 2021 , 3, 031004	4.9	8
29	Engineering High-Spin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. <i>Angewandte Chemie</i> , 2021 , 133, 14657-1	4665	2
28	Engineering High-Spin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14536-14544	16.4	27
27	Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. <i>Nature Communications</i> , 2021 , 12, 3634	17.4	31
26	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. <i>Angewandte Chemie</i> , 2021 , 133, 7494-7501	3.6	2
25	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7418-7425	16.4	38
24	Lattice site-dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. <i>Science Advances</i> , 2021 , 7, eabk1788	14.3	6
23	Covalency competition dominates the water oxidation structure Ectivity relationship on spinel oxides. <i>Nature Catalysis</i> , 2020 , 3, 554-563	36.5	110
22	Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2020 , 32, e2001292	24	56
21	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9418-9422	16.4	41
20	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. <i>Angewandte Chemie</i> , 2020 , 132, 9504-9508	3.6	13
19	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel-Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7765-7775	16.4	99
18	Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2003297	24	69
17	Antiferromagnetic Inverse Spinel Oxide LiCoVO with Spin-Polarized Channels for Water Oxidation. <i>Advanced Materials</i> , 2020 , 32, e1907976	24	44
16	Switch of the Rate-Determining Step of Water Oxidation by Spin-Selected Electron Transfer in Spinel Oxides. <i>Chemistry of Materials</i> , 2019 , 31, 8106-8111	9.6	41

LIST OF PUBLICATIONS

15	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019 , 31, e1807898	24	126
14	Origin of electronic structure dependent activity of spinel ZnNixCo2-xO4 oxides for complete methane oxidation. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117844	21.8	19
13	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. <i>Angewandte Chemie</i> , 2019 , 131, 6103-6108	3.6	46
12	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6042-6047	16.4	142
11	Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. <i>Nature Communications</i> , 2019 , 10, 572	17.4	142
10	Significance of Engineering the Octahedral Units to Promote the Oxygen Evolution Reaction of Spinel Oxides. <i>Advanced Materials</i> , 2019 , 31, e1902509	24	115
9	Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 290-	21.8 301	155
8	Photogenerated charge transfer via interfacial internal electric field for significantly improved photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/CoAl-layered double hydroxide heterojunction. <i>Applied Catalysis B: Environmental</i> , 2018 , 227, 530-540	21.8	152
7	Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. <i>Nano Energy</i> , 2018 , 52, 307-314	17.1	114
6	Identifying Influential Parameters of Octahedrally Coordinated Cations in Spinel ZnMnxCo2NO4 Oxides for the Oxidation Reaction. <i>ACS Catalysis</i> , 2018 , 8, 8568-8577	13.1	35
5	Degree of Geometric Tilting Determines the Activity of FeO6 Octahedra for Water Oxidation. <i>Chemistry of Materials</i> , 2018 , 30, 4313-4320	9.6	37
4	Ultranarrow Graphene Nanoribbons toward Oxygen Reduction and Evolution Reactions. <i>Advanced Science</i> , 2018 , 5, 1801375	13.6	41
3	Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. <i>ACS Energy Letters</i> , 2018 , 3, 2750-2756	20.1	103
2	An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. <i>Nano Energy</i> , 2018 , 50, 273-280	17.1	64
1	Catalytically Influential Features in Transition Metal Oxides. <i>ACS Catalysis</i> ,13947-13954	13.1	4