Sonia Fargue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173720/publications.pdf

Version: 2024-02-01

331259 377514 1,689 38 21 34 h-index citations g-index papers 41 41 41 1308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Primary hyperoxaluria type 1: pathophysiology and genetics. CKJ: Clinical Kidney Journal, 2022, 15, i4-i8.	1.4	12
2	Effect of alanine supplementation on oxalate synthesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 165981.	1.8	6
3	Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels. Biochemistry and Biophysics Reports, 2021, 28, 101138.	0.7	3
4	Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients, 2021, 13, 62.	1.7	39
5	Future treatments for hyperoxaluria. Current Opinion in Urology, 2020, 30, 171-176.	0.9	12
6	The effects of the inactivation of Hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165633.	1.8	13
7	End Points for Clinical Trials in Primary Hyperoxaluria. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1056-1065.	2.2	51
8	Reduction in urinary oxalate excretion in mouse models of Primary Hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase activity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2203-2209.	1.8	33
9	Metabolism of Glycolate to Oxalate in Kidney Proximal Tubule Cells. FASEB Journal, 2019, 33, 863.7.	0.2	1
10	Hydroxyproline Metabolism and Oxalate Synthesis in Primary Hyperoxaluria. Journal of the American Society of Nephrology: JASN, 2018, 29, 1615-1623.	3.0	44
11	MP67-02 THE EFFECT OF ALANINE ON CELL VIABILITY AND AGT ACTIVITY IN TRANSFORMED CHINESE HAMSTER OVARY CELLS. Journal of Urology, 2016, 195, .	0.2	0
12	High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for Primary Hyperoxaluria Type 1. Scientific Reports, 2016, 6, 34060.	1.6	20
13	MP67-03 MITOCHONDRIAL IMPLICATIONS OF GLYCOLATE METABOLISM IN PRIMARY HYPEROXALURIA. Journal of Urology, 2016, 195, .	0.2	0
14	Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1055-1062.	1.8	19
15	Metabolism of 13C5-hydroxyproline in mouse models of Primary Hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 233-239.	1.8	33
16	Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Human Molecular Genetics, 2015, 24, 5500-5511.	1.4	50
17	Development of a Phenotypic High-Content Assay to Identify Pharmacoperone Drugs for the Treatment of Primary Hyperoxaluria Type 1 by High-Throughput Screening. Assay and Drug Development Technologies, 2015, 13, 16-24.	0.6	19
18	MP34-04 INHIBITION OF GLYCOLATE OXIDASE REDUCES URINARY OXALATE EXCRETION IN A MOUSE MODEL OF PRIMARY HYPEROXALURIA TYPE 1. Journal of Urology, 2015, 193, .	0.2	0

#	Article	IF	Citations
19	A mutation creating an outâ€ofâ€frame alternative translation initiation site in the <scp><i>GRHPR</i></scp> 5′ <scp>UTR</scp> causing primary hyperoxaluria type <scp>II</scp> . Clinical Genetics, 2015, 88, 494-498.	1.0	8
20	Factors influencing clinical outcome in patients with primary hyperoxaluria type 1. Kidney International, 2014, 86, 1074-1076.	2.6	7
21	Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14406-14411.	3.3	56
22	Four of the Most Common Mutations in Primary Hyperoxaluria Type 1 Unmask the Cryptic Mitochondrial Targeting Sequence of Alanine:glyoxylate Aminotransferase Encoded by the Polymorphic Minor Allele. Journal of Biological Chemistry, 2013, 288, 2475-2484.	1.6	76
23	Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1776-1783.	1.8	85
24	Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrology Dialysis Transplantation, 2012, 27, 1729-1736.	0.4	266
25	The N-terminal extension is essential for the formation of the active dimeric structure of liver peroxisomal alanine:glyoxylate aminotransferase. International Journal of Biochemistry and Cell Biology, 2012, 44, 536-546.	1.2	29
26	Screening for NPHS2 Mutations May Help Predict FSGS Recurrence after Transplantation. Journal of the American Society of Nephrology: JASN, 2011, 22, 579-585.	3.0	82
27	Primary Hyperoxaluria. International Journal of Nephrology, 2011, 2011, 1-11.	0.7	76
28	Primary hyperoxaluria type 1: strategy for organ transplantation. Current Opinion in Organ Transplantation, 2010, 15, 590-593.	0.8	47
29	Tacrolimus nephrotoxicity: beware of the association of diarrhea, drug interaction and pharmacogenetics. Pediatric Nephrology, 2010, 25, 965-969.	0.9	37
30	Bone metabolism in oxalosis: a single-center study using new imaging techniques and biomarkers. Pediatric Nephrology, 2010, 25, 1081-1089.	0.9	31
31	Genotype–phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney International, 2010, 77, 443-449.	2.6	117
32	Effect of conservative treatment on the renal outcome of children with primary hyperoxaluria type 1. Kidney International, 2009, 76, 767-773.	2.6	57
33	Disease recurrence in paediatric renal transplantation. Pediatric Nephrology, 2009, 24, 2097-2108.	0.9	135
34	Survey of First-Year Medical Students to Assess Their Knowledge and Attitudes Toward Organ Transplantation and Donation. Transplantation Proceedings, 2009, 41, 634-638.	0.3	52
35	Primary Hyperoxaluria. , 2009, , 1069-1079.		1
36	Hyperuricemia after liver transplantation in children. Pediatric Transplantation, 2008, 12, 847-853.	0.5	10

Sonia Fargue

#	Article	IF	CITATIONS
37	Review: New treatment strategies for proliferative lupus nephritis: keep children in mind!. Lupus, 2007, 16, 684-691.	0.8	12
38	Primary hyperoxaluria typeÂ1: still challenging!. Pediatric Nephrology, 2006, 21, 1075-1081.	0.9	135