
Gang-Ho Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173665/publications.pdf Version: 2024-02-01

CANC-HOLFE

#	Article	IF	CITATIONS
1	Paramagnetic Ultrasmall Gadolinium Oxide Nanoparticles as Advanced <i>T</i> ₁ MRI Contrast Agent: Account for Large Longitudinal Relaxivity, Optimal Particle Diameter, and <i>In Vivo T</i> ₁ MR Images. ACS Nano, 2009, 3, 3663-3669.	7.3	477
2	Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials, 2007, 28, 710-716.	5.7	138
3	Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Physical Chemistry Chemical Physics, 2012, 14, 12687.	1.3	135
4	Vertically Aligned Carbon Nanotubes Grown by Pyrolysis of Iron, Cobalt, and Nickel Phthalocyanines. Journal of Physical Chemistry B, 2003, 107, 9249-9255.	1.2	133
5	A Facile Synthesis, In vitro and In vivo MR Studies of <scp>d</scp> -Glucuronic Acid-Coated Ultrasmall Ln ₂ O ₃ (Ln = Eu, Gd, Dy, Ho, and Er) Nanoparticles as a New Potential MRI Contrast Agent. ACS Applied Materials & Interfaces, 2011, 3, 3325-3334.	4.0	133
6	Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Scientific Reports, 2015, 5, 8549.	1.6	121
7	Water-Soluble MnO Nanocolloid for a Molecular <i>T</i> ₁ MR Imaging: A Facile One-Pot Synthesis, In vivo <i>T</i> ₁ MR Images, and Account for Relaxivities. ACS Applied Materials & Interfaces, 2010, 2, 2949-2955.	4.0	92
8	Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials, 2012, 33, 3254-3261.	5.7	87
9	Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 91-94.	2.3	77
10	Dual-mode <i>T</i> ₁ and <i>T</i> ₂ magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and <i>in vivo</i> application. Nanotechnology, 2015, 26, 365102.	1.3	63
11	Gadolinium Oxide Nanoparticles as Potential Multimodal Imaging and Therapeutic Agents. Current Topics in Medicinal Chemistry, 2013, 13, 422-433.	1.0	60
12	Bloodâ€Pool and Targeting MRI Contrast Agents: From Gdâ€Chelates to Gdâ€Nanoparticles. European Journal of Inorganic Chemistry, 2012, 2012, 1924-1933.	1.0	52
13	Amino acid functionalized magnetite nanoparticles in saline solution. Current Applied Physics, 2009, 9, S32-S34.	1.1	50
14	Waterâ€Soluble <i>Ultra Small</i> Paramagnetic or Superparamagnetic Metal Oxide Nanoparticles for Molecular MR Imaging. European Journal of Inorganic Chemistry, 2009, 2009, 2477-2481.	1.0	48
15	Fluorescein-polyethyleneimine coated gadolinium oxide nanoparticles as T1 magnetic resonance imaging (MRI)–cell labeling (CL) dual agents. RSC Advances, 2012, 2, 10907.	1.7	46
16	Gadolinium as an MRI contrast agent. Future Medicinal Chemistry, 2018, 10, 639-661.	1.1	44
17	Recent Advances in Gadolinium Based Contrast Agents for Bioimaging Applications. Nanomaterials, 2021, 11, 2449.	1.9	39
18	Waterâ€Soluble Ultraâ€Small Manganese Oxide Surface Doped Gadolinium Oxide (Gd ₂ O ₃ @MnO) Nanoparticles for MRI Contrast Agent. European Journal of Inorganic Chemistry, 2010, 2010, 4555-4560.	1.0	38

#	Article	IF	CITATIONS
19	Gd Complexes of Macrocyclic Diethylenetriaminepentaacetic Acid (DTPA) Biphenyl-2,2′-bisamides as Strong Blood-Pool Magnetic Resonance Imaging Contrast Agents. Journal of Medicinal Chemistry, 2011, 54, 5385-5394.	2.9	37
20	A T1, T2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium–europium oxide nanoparticles. New Journal of Chemistry, 2012, 36, 2361.	1.4	34
21	Gadolinium Complex of DO3A-benzothiazole Aniline (BTA) Conjugate as a Theranostic Agent. Journal of Medicinal Chemistry, 2013, 56, 8104-8111.	2.9	34
22	Water-soluble ultrasmall Eu2O3 nanoparticles as a fluorescent imaging agent: In vitro and in vivo studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 85-91.	2.3	31
23	Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T ₁ MR images in a 1.5 T MR field. Physical Chemistry Chemical Physics, 2014, 16, 19866-19873.	1.3	31
24	Hydrophilic Biocompatible Poly(Acrylic Acid-co-Maleic Acid) Polymer as a Surface-Coating Ligand of Ultrasmall Gd2O3 Nanoparticles to Obtain a High r1 Value and T1 MR Images. Diagnostics, 2021, 11, 2.	1.3	28
25	Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material =) Tj ETQq1 1 0.784314 r agents. RSC Advances, 2018, 8, 3189-3197.	gBT /Over 1.7	lock 10 Tf 5 27
26	Bovine serum albumin (BSA) and cleaved-BSA conjugated ultrasmall Gd2O3 nanoparticles: Synthesis, characterization, and application to MRI contrast agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 450, 67-75.	2.3	26
27	Gd Complexes of DO3A-(Biphenyl-2,2′-bisamides) Conjugates as MRI Blood-Pool Contrast Agents. ACS Medicinal Chemistry Letters, 2012, 3, 1003-1007.	1.3	25
28	D-Glucuronic Acid Coated Gd(IO3)3·2H2O Nanomaterial as a PotentialT1MRI-CT Dual Contrast Agent. European Journal of Inorganic Chemistry, 2013, 2013, 2858-2866.	1.0	24
29	Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS Omega, 2022, 7, 2533-2553.	1.6	24
30	In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic) Tj ETQq0 0 0 rgBT	/Oyerlock 1.7	2 10 Tf 50 30
31	Gd-Complexes of 1,4,7,10-Tetraazacyclododecane-N,N′,N′′,N′′,N′′-1,4,7,10-tetraacetic Acid (DOTA) Tranexamates as a New Class of Blood-Pool Magnetic Resonance Imaging Contrast Agents. Journal of Medicinal Chemistry, 2011, 54, 143-152.	Conjugat 2.9	es of 21
32	Synthesis of nanoparticle CT contrast agents: <i>in vitro</i> and <i>in vivo</i> studies. Science and Technology of Advanced Materials, 2015, 16, 055003.	2.8	21
33	Gadolinium Complex of 1,4,7,10-Tetraazacyclododecane-1,4,7-trisacetic Acid (DO3A)–Ethoxybenzyl (EOB) Conjugate as a New Macrocyclic Hepatobiliary MRI Contrast Agent. Journal of Medicinal Chemistry, 2017, 60, 4861-4868.	2.9	21
34	<i>In vivo</i> neutron capture therapy of cancer using ultrasmall gadolinium oxide nanoparticles with cancer-targeting ability. RSC Advances, 2020, 10, 865-874.	1.7	20
35	Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd ₂ O ₃ nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Advances, 2018, 8, 12653-12665.	1.7	19
36	Synthesis, characterization, and X-ray attenuation properties of polyacrylic acid-coated ultrasmall heavy metal oxide (Bi2O3, Yb2O3, NaTaO3, Dy2O3, and Gd2O3) nanoparticles as potential CT contrast agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 73-81.	2.3	19

#	Article	IF	CITATIONS
37	Carbon-coated ultrasmall gadolinium oxide (Gd2O3@C) nanoparticles: Application to magnetic resonance imaging and fluorescence properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124261.	2.3	19
38	Ultrasmall Gd2O3 nanoparticles surface-coated by polyacrylic acid (PAA) and their PAA-size dependent relaxometric properties. Applied Surface Science, 2019, 477, 111-115.	3.1	18
39	Glioblastoma-Derived Exosomes as Nanopharmaceutics for Improved Glioma Treatment. Pharmaceutics, 2022, 14, 1002.	2.0	17
40	d -Glucuronic Acid-Coated Ultrasmall Paramagnetic Ln2 O3 (Ln = Tb, Dy, and Ho) Nanoparticles: Magnetic Properties, Water Proton Relaxivities, and Fluorescence Properties. European Journal of Inorganic Chemistry, 2019, 2019, 3832-3839.	1.0	16
41	Cyclic RGDâ€Coated Ultrasmall Gd ₂ O ₃ Nanoparticles as Tumorâ€Targeting Positive Magnetic Resonance Imaging Contrast Agents. European Journal of Inorganic Chemistry, 2018, 2018, 3070-3079.	1.0	15
42	Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles. Nanomaterials, 2021, 11, 1355.	1.9	15
43	Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics, 2021, 13, 1890.	2.0	13
44	Ligand-size and ligand-chain hydrophilicity effects on the relaxometric properties of ultrasmall Gd2O3 nanoparticles. AIP Advances, 2016, 6, .	0.6	12
45	Multifunctional imaging of amyloid-beta peptides with a new gadolinium-based contrast agent in Alzheimer's disease. Journal of Industrial and Engineering Chemistry, 2020, 83, 214-223.	2.9	12
46	Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging. Biomaterials, 2020, 243, 119939.	5.7	12
47	Synthesis, Characterization, and Anticancer Activity of Benzothiazole Aniline Derivatives and Their Platinum (II) Complexes as New Chemotherapy Agents. Pharmaceuticals, 2021, 14, 832.	1.7	12
48	Polyaspartic Acid-Coated Paramagnetic Gadolinium Oxide Nanoparticles as a Dual-Modal T1 and T2 Magnetic Resonance Imaging Contrast Agent. Applied Sciences (Switzerland), 2021, 11, 8222.	1.3	11
49	Surface Coated Eu(OH) ₃ Nanorods: A Facile Synthesis, Characterization, MR Relaxivities and <i>In Vitro</i> Cytotoxicity. Journal of Nanoscience and Nanotechnology, 2013, 13, 7214-7219.	0.9	10
50	Water-soluble <scp>d</scp> -glucuronic acid coated ultrasmall mixed Ln/Mn (Ln = Gd and Dy) oxide nanoparticles and their application to magnetic resonance imaging. Biomaterials Science, 2014, 2, 1287-1295.	2.6	10
51	A Novel Paramagnetic Nanoparticle <scp>T₂</scp> Magnetic Resonance Imaging Contrast Agent With High Colloidal Stability: Polyacrylic <scp>Acidâ€Coated</scp> Ultrafine Dysprosium Oxide Nanoparticles. Bulletin of the Korean Chemical Society, 2020, 41, 829-836.	1.0	9
52	Ultrasmall Europium, Gadolinium, and Dysprosium Oxide Nanoparticles: Polyol Synthesis, Properties, and Biomedical Imaging Applications. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1767-1780.	1.1	9
53	Gadolinium agents for theragnosis of malignant tumors. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 167-170.	0.7	8
54	New Class of Efficient T2 Magnetic Resonance Imaging Contrast Agent: Carbon-Coated Paramagnetic Dysprosium Oxide Nanoparticles. Pharmaceuticals, 2020, 13, 312.	1.7	8

#	Article	IF	CITATIONS
55	Biomedical Applications of Lanthanide Oxide Nanoparticles. Journal of Biomaterials and Tissue Engineering, 2017, 7, 757-769.	0.0	8
56	Synthesis and characterization of poly(3â€octylthiophene)/single wall carbon nanotube composites for photovoltaic applications. Journal of Applied Polymer Science, 2010, 118, 1386-1394.	1.3	7
57	Synthesis, Characterization, and Enhanced Cancerâ€Imaging Application of Transâ€activator of Transcription Peptideâ€conjugated Ultrasmall Gadolinium Oxide Nanoparticles. Bulletin of the Korean Chemical Society, 2018, 39, 435-441.	1.0	7
58	In Vivo Positive Magnetic Resonance Imaging of Brain Cancer (U87MG) Using Folic Acid-Conjugated Polyacrylic Acid-Coated Ultrasmall Manganese Oxide Nanoparticles. Applied Sciences (Switzerland), 2021, 11, 2596.	1.3	7
59	Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential <l>T</l> ₁ Theranostic Magnetic Resonance Imaging Agent. Journal of Biomedical Nanotechnology, 2016, 12, 894-908.	0.5	6
60	Dextranâ€Coated Ultrasmall Gd ₂ O ₃ Nanoparticles as Potential T ₁ MRI Contrast Agent. ChemistrySelect, 2016, 1, 6086-6091.	0.7	6
61	Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image. Journal of the Korean Physical Society, 2015, 66, 1295-1302.	0.3	5
62	Synthesis and Structure–Activity Relationships of Gadolinium Complexes of DO3A–Benzothiazole Conjugates as Potential Theranostic Agents. European Journal of Inorganic Chemistry, 2015, 2015, 599-604.	1.0	5
63	Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles. Journal of the Korean Physical Society, 2015, 67, 44-51.	0.3	5
64	Facile synthesis of stable colloidal suspension of amorphous carbon nanoparticles in aqueous medium and their characterization. Journal of Physics and Chemistry of Solids, 2018, 120, 96-103.	1.9	5
65	X-ray Attenuation Properties of Ultrasmall Yb2O3 Nanoparticles as a High-Performance CT Contrast Agent. Journal of the Korean Physical Society, 2019, 74, 286-291.	0.3	5
66	Gadolinium-Based Neuroprognostic Magnetic Resonance Imaging Agents Suppress COX-2 for Prevention of Reperfusion Injury after Stroke. Journal of Medicinal Chemistry, 2020, 63, 6909-6923.	2.9	5
67	Gd(III) doping effect on magnetization and water proton relaxivities in ultra small iron oxide nanoparticles. AIP Advances, 2013, 3, .	0.6	4
68	Non-Specific Zn ²⁺ Ion Sensing Using Ultrasmall Gadolinium Oxide Nanoparticle as a Magnetic Resonance Imaging Contrast Agent. Journal of Nanoscience and Nanotechnology, 2016, 16, 2433-2437.	0.9	4
69	Magnetic separation of nucleic acids from various biological samples using silica-coated iron oxide nanobeads. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	4
70	D-Glucuronic Acid-Coated Ultrasmall Bi ₂ O ₃ Nanoparticles for CT Imaging. Journal of Nanoscience and Nanotechnology, 2020, 20, 4638-4642.	0.9	4
71	Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging. International Journal of Molecular Sciences, 2022, 23, 1792.	1.8	4
72	Mono and Multiple Tumor-Targeting Ligand-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Enhanced Tumor Imaging and Blood Circulation. Pharmaceutics, 2022, 14, 1458.	2.0	4

#	Article	IF	CITATIONS
73	Application of Dyeâ€coated Ultrasmall Gadolinium Oxide Nanoparticles for Biomedical Dual Imaging. Bulletin of the Korean Chemical Society, 2017, 38, 1058-1068.	1.0	3
74	Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities. Nanomaterials, 2022, 12, 1588.	1.9	3
75	Fluorescent Brightener 28-Coated Fe ₃ O ₄ Nanoparticles: Synthesis, Characterization, and Fluorescent Properties. Journal of Nanoscience and Nanotechnology, 2016, 16, 10986-10990.	0.9	2
76	Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications. International Journal of Modern Physics B, 2017, 31, 1750014.	1.0	2
77	Relaxometric, Optical and Cell Viability Properties of D-Glucuronic Acid Coated Cr2O3 Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 6333-6338.	0.9	2
78	Size-controlled one-pot polyol synthesis and characterization of D-glucuronic acid-coated ultrasmall BiOI nanoparticles as potential x-ray contrast agent. Materials Research Express, 2019, 6, 015039.	0.8	2
79	Chitosan Oligosaccharide Lactate-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Synthesis, <i>In Vitro</i> Cytotoxicity, and Relaxometric Properties. Journal of Nanoscience and Nanotechnology, 2021, 21, 4145-4150.	0.9	2
80	Potential perpendicular magnetic recording material: Supported and unsupported vertically-grown ferromagnetic iron nanowire arrays. Journal of the Korean Physical Society, 2014, 65, 717-721.	0.3	1
81	Longitudinal Water Proton Relaxivity and <i>In Vivo T</i> ₁ MR Images of Mixed Zn(II)/Gd(III) Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2017, 17, 2423-2430.	0.9	1
82	Paramagnetic ultrasmall Ho ₂ O ₃ and Tm ₂ O ₃ nanoparticles: characterization of <i>r</i> ₂ values and <i>in vivo T</i> ₂ MR images at a 3.0 T MR field. Materials Advances, 2022, 3, 5857-5870.	2.6	1
83	Synthesis, MR Relaxivities, and In Vitro Cytotoxicity of 3,5-Diiodo-L-tyrosine-Coated Gd2O3 Nanoparticles. BioNanoScience, 2019, 9, 179-185.	1.5	0
84	Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles. BioNanoScience, 2021, 11, 380-389.	1.5	0