
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11736501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laminar microcircuitry of visual cortex producing attention-associated electric fields. ELife, 2022, 11, .	6.0	12
2	A meta-analytic review of transcranial direct current stimulation (tDCS) on general psychopathology symptoms of schizophrenia; immediate improvement followed by a return to baseline. Psychiatry Research, 2022, 310, 114471.	3.3	5
3	Alpha suppression indexes a spotlight of visual-spatial attention that can shine on both perceptual and memory representations. Psychonomic Bulletin and Review, 2022, 29, 681-698.	2.8	23
4	Cross-frequency coupling of frontal theta and posterior alpha is unrelated to the fidelity of visual long-term memory encoding. Visual Cognition, 2022, 30, 379-392.	1.6	1
5	Even affective changes induced by the global health crisis are insufficient to perturb the hyper-stability of visual long-term memory. Cognitive Research: Principles and Implications, 2022, 7, .	2.0	2
6	Stimulus-induced Alpha Suppression Tracks the Difficulty of Attentional Selection, Not Visual Working Memory Storage. Journal of Cognitive Neuroscience, 2021, 33, 536-562.	2.3	16
7	Converging Evidence That Neural Plasticity Underlies Transcranial Direct-Current Stimulation. Journal of Cognitive Neuroscience, 2021, 33, 146-157.	2.3	11
8	Spatial location is filtered out of visual working memory representations when task irrelevant, just like other features. Attention, Perception, and Psychophysics, 2021, 83, 1391-1396.	1.3	1
9	α-Band activity tracks a two-dimensional spotlight of attention during spatial working memory maintenance. Journal of Neurophysiology, 2021, 125, 957-971.	1.8	15
10	Medium strength visual long-term memories are the most fragile. Psychonomic Bulletin and Review, 2021, 28, 1615-1622.	2.8	1
11	Induced Forgetting Is the Result of True Forgetting, Not Shifts in Decision-making Thresholds. Journal of Cognitive Neuroscience, 2021, 33, 1129-1141.	2.3	4
12	Do we remember templates better so that we can reject distractors better?. Attention, Perception, and Psychophysics, 2020, 82, 269-279.	1.3	8
13	Visual working memory load does not eliminate visuomotor repetition effects. Attention, Perception, and Psychophysics, 2020, 82, 1290-1303.	1.3	1
14	Performance Monitoring during Visual Priming. Journal of Cognitive Neuroscience, 2020, 32, 515-526.	2.3	19
15	A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation. Journal of Neuroscience, 2020, 40, 8513-8529.	3.6	15
16	Dissociation of Medial Frontal β-Bursts and Executive Control. Journal of Neuroscience, 2020, 40, 9272-9282.	3.6	24
17	What not to look for: Electrophysiological evidence that searchers prefer positive templates. Neuropsychologia, 2020, 140, 107376.	1.6	13
18	Quantifying the attentional impact of working memory matching targets and distractors. Visual Cognition, 2019, 27, 452-466.	1.6	5

#	Article	IF	CITATIONS
19	The Contralateral Delay Activity Tracks the Sequential Loading of Objects into Visual Working Memory, Unlike Lateralized Alpha Oscillations. Journal of Cognitive Neuroscience, 2019, 31, 1689-1698.	2.3	19
20	Electrophysiological and behavioral evidence for attentional up-regulation, but not down-regulation, when encoding pictures into long-term memory. Memory and Cognition, 2019, 47, 351-364.	1.6	11
21	Contralateral delay activity tracks the storage of visually presented letters and words. Psychophysiology, 2019, 56, e13282.	2.4	5
22	Localization and Elimination of Attentional Dysfunction in Schizophrenia During Visual Search. Schizophrenia Bulletin, 2019, 45, 96-105.	4.3	7
23	Performance monitoring signals during visual priming. Journal of Vision, 2019, 19, 316b.	0.3	Ο
24	The contralateral delay activity tracks the storage of sequentially presented colors and letters. Journal of Vision, 2019, 19, 204c.	0.3	0
25	Does Lying Require More or Less Visual Working Memory and What Does It Mean for the Legal System?. Journal of Vision, 2019, 19, 75c.	0.3	0
26	What not to look for: electrophysiological evidence that searchers prefer positive template. Journal of Vision, 2019, 19, 234a.	0.3	0
27	Prefrontal Control of Visual Distraction. Current Biology, 2018, 28, 414-420.e3.	3.9	83
28	Personality correlates of individual differences in the recruitment of cognitive mechanisms when rewards are at stake. Psychophysiology, 2018, 55, e12987.	2.4	4
29	Neural bases of automaticity Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 440-464.	0.9	17
30	Visual working memory buffers information retrieved from visual long-term memory. Proceedings of the United States of America, 2017, 114, 5306-5311.	7.1	48
31	Recognition-induced forgetting of faces in visual long-term memory. Attention, Perception, and Psychophysics, 2017, 79, 1878-1885.	1.3	15
32	Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Attention, Perception, and Psychophysics, 2017, 79, 3-23.	1.3	106
33	Electrophysiological measurement of information flow during visual search. Psychophysiology, 2016, 53, 535-543.	2.4	8
34	Electrical Stimulation of Visual Cortex Can Immediately Improve Spatial Vision. Current Biology, 2016, 26, 1867-1872.	3.9	64
35	Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations. Journal of Neurophysiology, 2016, 116, 1715-1727.	1.8	63
36	Attention's Accelerator. Psychological Science, 2016, 27, 790-798.	3.3	24

#	Article	IF	CITATIONS
37	Predicting and Improving Recognition Memory Using Multiple Electrophysiological Signals in Real Time. Psychological Science, 2015, 26, 1026-1037.	3.3	24
38	Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 625-630.	7.1	50
39	Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term. Psychonomic Bulletin and Review, 2015, 22, 1349-1357.	2.8	5
40	The surprising temporal specificity of direct-current stimulation. Trends in Neurosciences, 2015, 38, 459-461.	8.6	15
41	Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9448-9453.	7.1	100
42	Individual Differences in Visual Working Memory Capacity. , 2015, , 105-119.		35
43	Visualizing Trumps Vision in Training Attention. Psychological Science, 2015, 26, 1114-1122.	3.3	20
44	Transient reduction of visual distraction following electrical stimulation of the prefrontal cortex. Cognition, 2015, 145, 73-76.	2.2	18
45	Medial–Frontal Stimulation Enhances Learning in Schizophrenia by Restoring Prediction Error Signaling. Journal of Neuroscience, 2015, 35, 12232-12240.	3.6	41
46	Can we throw information out of visual working memory and does this leave informational residue in long-term memory?. Frontiers in Psychology, 2014, 5, 294.	2.1	7
47	Perceptual Expertise and Top–Down Expectation of Musical Notation Engages the Primary Visual Cortex. Journal of Cognitive Neuroscience, 2014, 26, 1629-1643.	2.3	26
48	Microcircuitry of Agranular Frontal Cortex: Testing the Generality of the Canonical Cortical Microcircuit. Journal of Neuroscience, 2014, 34, 5355-5369.	3.6	82
49	Visual working memory gives up attentional control early in learning: Ruling out interhemispheric cancellation. Psychophysiology, 2014, 51, 800-804.	2.4	15
50	Oscillatory Coupling Reveals the Dynamic Reorganization of Large-scale Neural Networks as Cognitive Demands Change. Journal of Cognitive Neuroscience, 2014, 26, 175-188.	2.3	12
51	Understanding age-related reductions in visual working memory capacity: Examining the stages of change detection. Attention, Perception, and Psychophysics, 2014, 76, 2015-2030.	1.3	25
52	Causal Control of Medial–Frontal Cortex Governs Electrophysiological and Behavioral Indices of Performance Monitoring and Learning. Journal of Neuroscience, 2014, 34, 4214-4227.	3.6	119
53	Forgetting induced by recognition of visual images. Visual Cognition, 2014, 22, 789-808.	1.6	37
54	Electrophysiological evidence for preparatory reconfiguration before voluntary task switches but not cued task switches. Psychonomic Bulletin and Review, 2014, 21, 454-461.	2.8	16

#	Article	IF	CITATIONS
55	The neurophysiological index of visual working memory maintenance is not due to load dependent eye movements. Neuropsychologia, 2014, 56, 63-72.	1.6	18
56	High Stakes Trigger the Use of Multiple Memories to Enhance the Control of Attention. Cerebral Cortex, 2014, 24, 2022-2035.	2.9	51
57	The benefit of forgetting. Psychonomic Bulletin and Review, 2013, 20, 348-355.	2.8	100
58	Viewing the dynamics and control of visual attention through the lens of electrophysiology. Vision Research, 2013, 80, 7-18.	1.4	10
59	Visual–spatial attention aids the maintenance of object representations in visual working memory. Memory and Cognition, 2013, 41, 698-715.	1.6	39
60	Reconciling conflicting electrophysiological findings on the guidance of attention by working memory. Attention, Perception, and Psychophysics, 2013, 75, 1330-1335.	1.3	17
61	Where do we store the memory representations that guide attention?. Journal of Vision, 2013, 13, 1-1.	0.3	133
62	On the origin of event-related potentials indexing covert attentional selection during visual search: timing of selection by macaque frontal eye field and event-related potentials during pop-out search. Journal of Neurophysiology, 2013, 109, 557-569.	1.8	39
63	Templates for rejection: Configuring attention to ignore task-irrelevant features Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 580-584.	0.9	146
64	Directed forgetting and directed remembering in visual working memory Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1206-1220.	0.9	80
65	Homologous Mechanisms of Visuospatial Working Memory Maintenance in Macaque and Human: Properties and Sources. Journal of Neuroscience, 2012, 32, 7711-7722.	3.6	71
66	Event-related potentials elicited by errors during the stop-signal task. II: Human effector-specific error responses. Journal of Neurophysiology, 2012, 107, 2794-2807.	1.8	23
67	Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in position. Visual Cognition, 2012, 20, 1-28.	1.6	73
68	A Stage Theory of Attention and Action. , 2012, , 187-208.		2
69	Features and Conjunctions in Visual Working Memory. , 2012, , 369-377.		7
70	The cost of accessing an object's feature stored in visual working memory. Visual Cognition, 2011, 19, 1-12.	1.6	24
71	Visual working memory contaminates perception. Psychonomic Bulletin and Review, 2011, 18, 860-869.	2.8	61
72	Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 2011, 137, 217-225.	1.5	108

#	Article	IF	CITATIONS
73	When Memory Is Not Enough: Electrophysiological Evidence for Goal-dependent Use of Working Memory Representations in Guiding Visual Attention. Journal of Cognitive Neuroscience, 2011, 23, 2650-2664.	2.3	51
74	Semantic Analysis Does Not Occur in the Absence of Awareness Induced by Interocular Suppression. Journal of Neuroscience, 2011, 31, 13535-13545.	3.6	77
75	Direct Electrophysiological Measurement of Attentional Templates in Visual Working Memory. Psychological Science, 2011, 22, 212-215.	3.3	71
76	Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys. Journal of Neuroscience, 2011, 31, 15640-15649.	3.6	63
77	Attentional Templates in Visual Working Memory. Journal of Neuroscience, 2011, 31, 9315-9322.	3.6	271
78	Measurement of the extraocular spike potential during saccade countermanding. Journal of Neurophysiology, 2011, 106, 104-114.	1.8	24
79	Homologues of Human ERP Components in Nonhuman Primates. , 2011, , .		9
80	A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, and Psychophysics, 2010, 72, 2031-2046.	1.3	348
81	Masked targets trigger event-related potentials indexing shifts of attention but not error detection. Psychophysiology, 2010, 47, 410-414.	2.4	24
82	Why is information displaced from visual working memory during visual search?. Visual Cognition, 2010, 18, 275-295.	1.6	11
83	Cooperation and Competition among Frontal Eye Field Neurons during Visual Target Selection. Journal of Neuroscience, 2010, 30, 3227-3238.	3.6	46
84	Neural Correlates of Correct and Errant Attentional Selection Revealed Through N2pc and Frontal Eye Field Activity. Journal of Neurophysiology, 2010, 104, 2433-2441.	1.8	41
85	A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, and Psychophysics, 2010, 72, 2031-2046.	1.3	207
86	Reply to Balan and Gottlieb. Journal of Neurophysiology, 2009, 102, 1342-1343.	1.8	2
87	On the Origin of Event-Related Potentials Indexing Covert Attentional Selection During Visual Search. Journal of Neurophysiology, 2009, 102, 2375-2386.	1.8	58
88	A cuing study of the N2pc component: An index of attentional deployment to objects rather than spatial locations. Brain Research, 2009, 1297, 101-111.	2.2	81
89	The role of attention in the binding of surface features to locations. Visual Cognition, 2009, 17, 10-24.	1.6	32
90	Neural Basis of the Set-Size Effect in Frontal Eye Field: Timing of Attention During Visual Search. Journal of Neurophysiology, 2009, 101, 1699-1704.	1.8	73

#	Article	IF	CITATIONS
91	Biophysical Support for Functionally Distinct Cell Types in the Frontal Eye Field. Journal of Neurophysiology, 2009, 101, 912-916.	1.8	42
92	The comparison of visual working memory representations with perceptual inputs Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1140-1160.	0.9	142
93	Selective storage and maintenance of an object's features in visual working memory. Psychonomic Bulletin and Review, 2008, 15, 223-229.	2.8	202
94	The Effect of Visual Search Efficiency on Response Preparation. Psychological Science, 2008, 19, 128-136.	3.3	70
95	The Role of Working Memory Representations in the Control of Attention. Cerebral Cortex, 2007, 17, i118-i124.	2.9	143
96	Nonhuman primate event-related potentials indexing covert shifts of attention. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15111-15116.	7.1	74
97	Do the contents of visual working memory automatically influence attentional selection during visual search?. Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 363-377.	0.9	318
98	Implicit memory influences the allocation of attention in visual cortex. Psychonomic Bulletin and Review, 2007, 14, 834-839.	2.8	78
99	Difficulty of Visual Search Modulates Neuronal Interactions and Response Variability in the Frontal Eye Field. Journal of Neurophysiology, 2007, 98, 2580-2587.	1.8	22
100	Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices". Science, 2007, 318, 44-44.	12.6	26
101	The time course of consolidation in visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1436-1451.	0.9	353
102	The role of working memory and long-term memory in visual search. Visual Cognition, 2006, 14, 808-830.	1.6	49
103	Fractionating Working Memory. Psychological Science, 2005, 16, 106-113.	3.3	108
104	Pushing around the Locus of Selection: Evidence for the Flexible-selection Hypothesis. Journal of Cognitive Neuroscience, 2005, 17, 1907-1922.	2.3	94
105	Neural fate of ignored stimuli: dissociable effects of perceptual and working memory load. Nature Neuroscience, 2004, 7, 992-996.	14.8	198
106	Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin and Review, 2004, 11, 269-274.	2.8	249
107	Perceptual organization influences visual working memory. Psychonomic Bulletin and Review, 2003, 10, 80-87.	2.8	214
108	Dissociations Among Attention, Perception, and Awareness During Object-Substitution Masking. Psychological Science, 2003, 14, 605-611.	3.3	215

#	Article	IF	CITATIONS
109	Serial deployment of attention during visual search Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 121-138.	0.9	378
110	Serial deployment of attention during visual search Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 121-138.	0.9	228
111	Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 2002, 64, 754-763.	2.3	245
112	Attention is not unitary. Behavioral and Brain Sciences, 2001, 24, 153-154.	0.7	6
113	Storage of features, conjunctions, and objects in visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 92-114.	0.9	726
114	Visual Search Remains Efficient when Visual Working Memory is Full. Psychological Science, 2001, 12, 219-224.	3.3	296
115	Event-related potential studies of attention. Trends in Cognitive Sciences, 2000, 4, 432-440.	7.8	906
116	Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 1999, 400, 867-869.	27.8	569
117	Does motor noise contaminate estimates of the precision of visual working memory?. Visual Cognition, 0, , 1-7.	1.6	2