Michael Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173636/publications.pdf

Version: 2024-02-01

64 papers

3,676 citations

28 h-index 59 g-index

64 all docs 64 docs citations

64 times ranked 3184 citing authors

#	Article	IF	CITATIONS
1	Simulating grazing beef and sheep systems. Agricultural Systems, 2022, 195, 103307.	3.2	10
2	Comparisons of commercially available NIRS-based analyte predictions of haylage quality for equid nutrition. Animal Feed Science and Technology, 2022, 283, 115158.	1.1	0
3	A perspective on animal welfare of grazing ruminants and its relationship with sustainability. Animal Production Science, 2022, 62, 1739-1748.	0.6	13
4	CO2 fluxes from three different temperate grazed pastures using Eddy covariance measurements. Science of the Total Environment, 2022, 831, 154819.	3.9	6
5	Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms. Reproduction, Fertility and Development, 2021, 33, 1.	0.1	15
6	Using a lamb's early-life liveweight as a predictor of carcass quality. Animal, 2021, 15, 100018.	1.3	9
7	Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors, 2021, 21, 2696.	2.1	29
8	Data to identify key drivers of animal growth and carcass quality for temperate lowland sheep production systems. Data in Brief, 2021, 35, 106977.	0.5	1
9	Impacts of African swine fever on water quality in China. Environmental Research Letters, 2021, 16, 054032.	2.2	5
10	Nutrient provision capacity of alternative livestock farming systems per area of arable farmland required. Scientific Reports, 2021, 11, 14975.	1.6	8
11	Nutritional value of suckler beef from temperate pasture systems. Animal, 2021, 15, 100257.	1.3	12
12	Quantifying the value of on-farm measurements to inform the selection of key performance indicators for livestock production systems. Scientific Reports, 2021, 11, 16874.	1.6	2
13	Comparative Expression Profiling and Sequence Characterization of ATP1A1 Gene Associated with Heat Tolerance in Tropically Adapted Cattle. Animals, 2021, 11, 2368.	1.0	10
14	Taking the steps toward sustainable livestock: our multidisciplinary global farm platform journey. Animal Frontiers, 2021, 11, 52-58.	0.8	10
15	Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. International Journal of Life Cycle Assessment, 2020, 25, 208-221.	2.2	72
16	Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass and Forage Science, 2020, 75, 1-17.	1.2	75
17	Cross Inoculation of Rumen Fluid to Improve Dry Matter Disappearance and Its Effect on Bacterial Composition Using an in vitro Batch Culture Model. Frontiers in Microbiology, 2020, 11, 531404.	1.5	2
18	The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species. Agronomy, 2020, 10, 1463.	1.3	12

#	Article	IF	CITATIONS
19	Elucidating three-way interactions between soil, pasture and animals that regulate nitrous oxide emissions from temperate grazing systems. Agriculture, Ecosystems and Environment, 2020, 300, 106978.	2.5	18
20	The â€~Palo a Pique' Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay. Agronomy, 2020, 10, 441.	1.3	8
21	In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations. Animals, 2020, 10, 1076.	1.0	14
22	Welfare Challenges of Dairy Cows in India Identified Through On-Farm Observations. Animals, 2020, 10, 586.	1.0	12
23	Does the "high sugar―trait of perennial ryegrass cultivars express under temperate climate conditions?. Grass and Forage Science, 2019, 74, 496-508.	1.2	16
24	Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients, 2019, 11, 2282.	1.7	52
25	Effects of soybean oil supplement to diets of lactating dairy cows, on productive performance, and milk fat acids profile: a meta-analysis. Italian Journal of Animal Science, 2019, 18, 809-819.	0.8	12
26	Livestock Performance for Sheep and Cattle Grazing Lowland Permanent Pasture: Benchmarking Potential of Forage-Based Systems. Agronomy, 2019, 9, 101.	1.3	20
27	The potential of silage lactic acid bacteria-derived nano-selenium as a dietary supplement in sheep. Animal Production Science, 2019, 59, 1999.	0.6	10
28	Nitrogen and fatty acid rumen metabolism in cattle offered high or low polyphenol oxidase red clover silage. Animal, 2019, 13, 1623-1634.	1.3	5
29	Roles of instrumented farm-scale trials in trade-off assessments of pasture-based ruminant production systems. Animal, 2018, 12, 1766-1776.	1.3	33
30	Global environmental costs of China's thirst for milk. Global Change Biology, 2018, 24, 2198-2211.	4.2	56
31	Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model. Geoderma, 2018, 315, 49-58.	2.3	21
32	Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems. Journal of Cleaner Production, 2018, 171, 1672-1680.	4.6	58
33	Review: Use of human-edible animal feeds by ruminant livestock. Animal, 2018, 12, 1735-1743.	1.3	108
34	Size does matter: Parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle. Ecology and Evolution, 2018, 8, 10608-10620.	0.8	21
35	China's livestock transition: Driving forces, impacts, and consequences. Science Advances, 2018, 4, eaar8534.	4.7	253
36	Livestock production evolving to contribute to sustainable societies. Animal, 2018, 12, 1696-1698.	1.3	7

#	Article	IF	Citations
37	Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food and Energy Security, 2018, 7, e00143.	2.0	49
38	The role of pasture in the diet of ruminant livestock. Burleigh Dodds Series in Agricultural Science, 2018, , 31-54.	0.1	1
39	Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Science of the Total Environment, 2017, 603-604, 27-37.	3.9	21
40	Environmental trade-offs of pig production systems under varied operational efficiencies. Journal of Cleaner Production, 2017, 165, 1163-1173.	4.6	43
41	The <scp>N</scp> orth <scp>W</scp> yke <scp>F</scp> arm <scp>P</scp> latform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science, 2016, 67, 374-385.	1.8	81
42	The effect of high polyphenol oxidase grass silage on metabolism of polyunsaturated fatty acids and nitrogen across the rumen of beef steers1. Journal of Animal Science, 2014, 92, 5076-5087.	0.2	16
43	Forage polyphenol oxidase and ruminant livestock nutrition. Frontiers in Plant Science, 2014, 5, 694.	1.7	65
44	Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. Journal of Dairy Science, 2014, 97, 3761-3776.	1.4	55
45	Agriculture: Steps to sustainable livestock. Nature, 2014, 507, 32-34.	13.7	276
46	Oxidation of <i>orthoâ€</i> diphenols in red clover with and without polyphenol oxidase (PPO) activity and their role in PPO activation and inactivation. Grass and Forage Science, 2013, 68, 83-92.	1.2	25
47	Effect of replacing grass silage with red clover silage on ruminal lipid metabolism in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. Journal of Dairy Science, 2013, 96, 5882-5900.	1.4	27
48	Genotyping by <scp>RAD</scp> sequencing enables mapping of fatty acid composition traits in perennial ryegrass (<i><scp>L</scp>olium perenne</i> (<scp>L</scp> .)). Plant Biotechnology Journal, 2013, 11, 572-581.	4.1	53
49	Fatty acid oxidation products (â€~green odour') released from perennial ryegrass following biotic and abiotic stress, potentially have antimicrobial properties against the rumen microbiota resulting in decreased biohydrogenation. Journal of Applied Microbiology, 2013, 115, 1081-1090.	1.4	9
50	Beef, chicken and lamb fatty acid analysis â€" a simplified direct bimethylation procedure using freeze-dried material. Meat Science, 2012, 92, 863-866.	2.7	54
51	Red clover polyphenol oxidase and lipid metabolism. Animal, 2011, 5, 512-521.	1.3	330
52	As yet uncultured bacteria phylogenetically classified as <i>Prevotella</i> , <i>Lachnospiraceae</i> incertae sedis and unclassified <i>Bacteroidales</i> , <i>Clostridiales</i> and <i>Ruminococcaceae</i> may play a predominant role in ruminal biohydrogenation. Environmental Microbiology, 2011, 13, 1500-1512.	1.8	191
53	Immunogold labelling to localize polyphenol oxidase (PPO) during wilting of red clover leaf tissue and the effect of removing cellular matrices on PPO protection of glycerolâ€based lipid in the rumen. Journal of the Science of Food and Agriculture, 2010, 90, 503-510.	1.7	28
54	Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	106

#	Article	IF	CITATIONS
55	Red clover polyphenol oxidase: Activation, activity and efficacy under grazing. Animal Feed Science and Technology, 2009, 149, 250-264.	1.1	53
56	Assessment of dietary ratios of red clover and grass silages on milk production and milk quality in dairy cows. Journal of Dairy Science, 2009, 92, 1148-1160.	1.4	76
57	Latent and Active Polyphenol Oxidase (PPO) in Red Clover (Trifolium pratense) and Use of a Low PPO Mutant To Study the Role of PPO in Proteolysis Reduction. Journal of Agricultural and Food Chemistry, 2008, 56, 2817-2824.	2.4	78
58	Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 2. Lipids1. Journal of Animal Science, 2006, 84, 3061-3070.	0.2	44
59	Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization1. Journal of Animal Science, 2006, 84, 3049-3060.	0.2	373
60	Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) in a simulated rumen environment. Journal of the Science of Food and Agriculture, 2006, 86, 1503-1511.	1.7	55
61	The effect of clover silages on long chain fatty acid rumen transformations and digestion in beef steers. Animal Science, 2003, 76, 491-501.	1.3	373
62	Rumen metabolism and nitrogen flow to the small intestine in steers offeredLolium perennecontaining different levels of water-soluble carbohydrate. Animal Science, 2002, 74, 587-596.	1.3	91
63	In vitro investigation into the nutritive value of Lolium perenne bred for an elevated concentration of water-soluble carbohydrate and the added effect of sample processing: freeze-dried and ground vs. frozen and thawed. Animal Research, 2002, 51, 269-277.	0.6	7
64	Production responses from lambs grazed on Lolium perenne selected for an elevated water-soluble carbohydrate concentration. Animal Research, 2001, 50, 441-449.	0.6	81