Margherita De Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis. Journal of the American Chemical Society, 2020, 142, 1752-1756.	13.7	112
2	Mild Friedel–Crafts Reactions inside a Hexameric Resorcinarene Capsule: Câ^'Cl Bond Activation through Hydrogen Bonding to Bridging Water Molecules. Angewandte Chemie - International Edition, 2018, 57, 5423-5428.	13.8	82
3	The Hexameric Resorcinarene Capsule at Work: Supramolecular Catalysis in Confined Spaces. Chemistry - A European Journal, 2019, 25, 4899-4913.	3.3	81
4	An efficient asymmetric aldol reaction of Chan's diene promoted by chiral Ti(IV)–BINOL complex. Tetrahedron: Asymmetry, 2001, 12, 959-963.	1.8	58
5	The hexameric resorcinarene capsule as an artificial enzyme: ruling the regio and stereochemistry of a 1,3-dipolar cycloaddition between nitrones and unsaturated aldehydes. Organic Chemistry Frontiers, 2018, 5, 827-837.	4.5	57
6	Recent Advances in Asymmetric Aldol Reaction of Masked Acetoacetic Esters Promoted by Ti(IV) / BINOL: A New Methodology, Non-Linear Effects and Autoinduction. Current Organic Chemistry, 2004, 8, 993-1007.	1.6	56
7	Supramolecular Catalysis with Selfâ€Assembled Capsules and Cages: What Happens in Confined Spaces. ChemCatChem, 2021, 13, 1638-1658.	3.7	52
8	Synthesis of calix[4]arene derivatives bearing chiral pendant groups as ligands for enantioselective catalysis. Tetrahedron: Asymmetry, 2005, 16, 2333-2340.	1.8	49
9	Enantioselective aldol condensation of O-silyl dienolates to aldehydes mediated by chiral BINOL–titanium complexes. Tetrahedron: Asymmetry, 2000, 11, 3187-3195.	1.8	47
10	Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds. Frontiers in Chemistry, 2018, 6, 84.	3.6	46
11	Silicon tetrachloride in organic synthesis: new applications for the vinylogous aldol reaction. Tetrahedron, 2005, 61, 4091-4097.	1.9	45
12	Tuning Cycloparaphenylene Host Properties by Chemical Modification. Journal of Organic Chemistry, 2017, 82, 9885-9889.	3.2	45
13	Enantioselective aldol condensation of 1,3-bis-(trimethylsilyloxy)-1-methoxy-buta-1,3-diene promoted by chiral Ti(IV)/BINOL complex. Tetrahedron: Asymmetry, 2000, 11, 2255-2258.	1.8	43
14	Pronounced asymmetric amplification in the aldol condensation of Chan's diene promoted by a Ti(IV)/BINOL complex. Tetrahedron: Asymmetry, 2004, 15, 2421-2424.	1.8	41
15	A convenient catalytic procedure for the highly enantioselective aldol condensation of O-silyldienolates. Tetrahedron: Asymmetry, 2003, 14, 2499-2502.	1.8	40
16	An efficient solvent free catalytic oxidation of sulfides to sulfoxides with hydrogen peroxide catalyzed by a binaphthyl-bridged Schiff base titanium complex. Tetrahedron Letters, 2006, 47, 7233-7235.	1.4	40
17	Solvent free reaction under microwave irradiation: A new procedure for Eu+3 — Catalyzed Michael addition of 1,3-dicarbonyl compounds. Tetrahedron Letters, 1997, 38, 289-290.	1.4	39
18	Alkylammonium Guest Inducedâ€Fit Recognition by a Flexible DihomoÂoxacalix[4]arene Derivative. European Journal of Organic Chemistry, 2016, 2016, 158-167.	2.4	37

#	Article	IF	CITATIONS
19	Exploiting the hydrophobicity of calixarene macrocycles for catalysis under "on-water―conditions. RSC Advances, 2016, 6, 91846-91851.	3.6	36
20	Synthesis and Comparison of the Antiinflammatory Activity of Manoalide and Cacospongionolide B Analogues. Journal of Medicinal Chemistry, 1998, 41, 3232-3238.	6.4	35
21	A combination of water and microwave irradiation promotes the catalyst-free addition of pyrroles and indoles to nitroalkenes. Tetrahedron, 2010, 66, 2981-2986.	1.9	34
22	Synergic Interplay Between Halogen Bonding and Hydrogen Bonding in the Activation of a Neutral Substrate in a Nanoconfined Space. Angewandte Chemie - International Edition, 2020, 59, 811-818.	13.8	34
23	First enantioselective synthesis of manoalide: application of aldehyde–dioxinone enantioselective condensation. Tetrahedron: Asymmetry, 1999, 10, 4481-4484.	1.8	32
24	Study on an Aldol Reaction Catalyzed by Ti(IV)/Calix[n]arene Complexes. Advanced Synthesis and Catalysis, 2005, 347, 816-824.	4.3	32
25	Rapid and General Protocol towards Catalystâ€Free Friedel–Crafts <i>C</i> â€Alkylation of Indoles in Water Assisted by Microwave Irradiation. European Journal of Organic Chemistry, 2010, 2010, 1029-1032.	2.4	32
26	Nonlinear effects and auto-induction in the asymmetric aldol condensation of synthetic equivalents of acetoacetic esters. Tetrahedron: Asymmetry, 2002, 13, 1949-1952.	1.8	30
27	Efficient organocatalysis with a calix[4]pyrrole derivative. Tetrahedron Letters, 2008, 49, 153-155.	1.4	29
28	γ-Cyclodextrin as a Catalyst for the Synthesis of 2-Methyl-3,5-diarylisoxazolidines in Water. Journal of Organic Chemistry, 2017, 82, 4631-4639.	3.2	29
29	K10 montmorillonite catalysis. Green Chemistry, 1999, 1, 157-162.	9.0	27
30	Ti(IV)/BINOL-catalyzed asymmetric aldol reaction of a masked acetoacetic ester: pronounced influence of catalyst concentration on nonlinear effects. Tetrahedron Letters, 2003, 44, 6087-6090.	1.4	27
31	Water opportunities: catalyst and solvent in Mukaiyama aldol addition of Rawal's diene to carbonyl derivatives. Tetrahedron, 2011, 67, 5949-5955.	1.9	27
32	The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. International Journal of Molecular Sciences, 2021, 22, 617.	4.1	27
33	Asymmetric auto-inductive aldol reaction by self-assembly of chiral ligands. Tetrahedron: Asymmetry, 2001, 12, 1529-1531.	1.8	26
34	A hexameric resorcinarene capsule as a hydrogen bonding catalyst in the conjugate addition of pyrroles and indoles to nitroalkenes. Organic Chemistry Frontiers, 2019, 6, 2339-2347.	4.5	26
35	Kinetic and Thermodynamic Modulation of Dynamic Imine Libraries Driven by the Hexameric Resorcinarene Capsule. Journal of the American Chemical Society, 2020, 142, 14914-14923.	13.7	26
36	An easy approach to chiral non-racemic 6-(furan-3-yl)-5,6-dihydro-pyran-2-ones. Tetrahedron: Asymmetry, 1998, 9, 2197-2199.	1.8	25

Margherita De Rosa

#	Article	IF	CITATIONS
37	Mo(CO)6-Catalyzed oxidation of furan derivatives to E- and Z-enediones by cumyl hydroperoxide. Tetrahedron Letters, 2003, 44, 835-837.	1.4	25
38	Novel promising linezolid analogues: Rational design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2013, 69, 779-785.	5.5	25
39	Mild Friedel–Crafts Reactions inside a Hexameric Resorcinarene Capsule: Câ~'Cl Bond Activation through Hydrogen Bonding to Bridging Water Molecules. Angewandte Chemie, 2018, 130, 5521-5526.	2.0	25
40	Efficient synthesis of chiral non-racemic 6-(furan-3-yl)-5,6-dihydro-pyran-2-ones. Tetrahedron: Asymmetry, 1999, 10, 3659-3662.	1.8	24
41	Enantioselective aldol condensation of O-silyldienolates derived from alkyl-substituted 2,2-dimethyl-[1,3]-dioxin-4-ones. Tetrahedron: Asymmetry, 2004, 15, 3029-3033.	1.8	24
42	The first organocatalytic addition of 2-trimethylsilyloxyfuran to carbonyl compounds: hydrogen-bond catalysis in γ-butenolides synthesis. Tetrahedron Letters, 2006, 47, 8507-8510.	1.4	24
43	Calixpyrrole Derivatives: "Multi Hydrogen Bond―Catalysts for γ-Butenolide Synthesis. Molecules, 2009, 14, 2594-2601.	3.8	24
44	A Simple Tetraminocalix[4]arene as a Highly Efficient Catalyst under "Onâ€Water―Conditions through Hydrophobic Amplification of Weak Hydrogen Bonds. Chemistry - A European Journal, 2017, 23, 7142-7151.	3.3	24
45	Calix[5]arene Through-the-Annulus Threading of Dialkylammonium Guests Weakly Paired to the TFPB Anion. Journal of Organic Chemistry, 2017, 82, 5162-5168.	3.2	23
46	An Anthracene-Incorporated [8]Cycloparaphenylene Derivative as an Emitter in Photon Upconversion. Journal of Organic Chemistry, 2018, 83, 220-227.	3.2	22
47	Stereochemistry of Antiinflammatory Marine Sesterterpenes. European Journal of Organic Chemistry, 2000, 2000, 947-953.	2.4	20
48	Novel Penicillin-Type Analogues Bearing a Variable Substituted 2-Azetidinone Ring at Position 6: Synthesis and Biological Evaluation. Molecules, 2015, 20, 22044-22057.	3.8	20
49	Enantioselective Synthesis of Pyranofuranone Moieties of Manoalide and Cacospongionolide B by Enzymatic and Chemical Approach. Tetrahedron, 2000, 56, 2095-2102.	1.9	19
50	Synthesis, crystal structure and application in regio- and stereoselective epoxidation of allylic alcohols of a titanium binaphthyl-bridged Schiff base complex. Journal of Molecular Catalysis A, 2005, 235, 253-259.	4.8	19
51	A New Organocatalytic Approach to Substituted Unsaturated Lactams. Letters in Organic Chemistry, 2009, 6, 301-305.	0.5	18
52	Synthesis of new antifungal peptides selective against Cryptococcus neoformans. Bioorganic and Medicinal Chemistry, 2010, 18, 7985-7990.	3.0	18
53	Nucleophilic Functionalization of the Calix[6]arene <i>Para</i> - and <i>Meta</i> -Position via <i>p</i> -Bromodienone Route. Journal of Organic Chemistry, 2015, 80, 7295-7300.	3.2	18
54	A new approach to pyranofuranones, advanced intermediates for the synthesis of manoalide, cacospongionolides and their analogues. Tetrahedron Letters, 1996, 37, 8007-8010.	1.4	17

#	Article	IF	CITATIONS
55	A three-step and enantioselective synthesis of (â^')-(S)- or (+)-(R)-2-(furan-3-yl)-3,6-dihydro-2H-pyrans. Tetrahedron Letters, 2000, 41, 1593-1596.	1.4	17
56	Genomic salmon testes DNA as a catalyst for Michael reactions in water. Tetrahedron, 2012, 68, 3086-3091.	1.9	17
57	Molecular Recognition in an Aqueous Medium Using Water-Soluble Prismarene Hosts. Organic Letters, 2022, 24, 2711-2715.	4.6	17
58	Improved Synthesis of Larger Resorcinarenes. Journal of Organic Chemistry, 2016, 81, 5726-5731.	3.2	16
59	"Leaching or not leachingâ€i an alternative approach to antimicrobial materials via copolymers containing crown ethers as active groups. Biomaterials Science, 2017, 5, 741-751.	5.4	14
60	Threading of an Inherently Directional Calixarene Wheel with Oriented Ammonium Axles. Journal of Organic Chemistry, 2017, 82, 8973-8983.	3.2	14
61	The Hexameric Resorcinarene Capsule as a BrÃ,nsted Acid Catalyst for the Synthesis of Bis(heteroaryl)methanes in a Nanoconfined Space. Frontiers in Chemistry, 2019, 7, 687.	3.6	13
62	Synthesis, Optoelectronic, and Supramolecular Properties of a Calix[4]arene–Cycloparaphenylene Hybrid Host. Organic Letters, 2018, 20, 7415-7418.	4.6	12
63	An Atom-Economical Method for the Formation of Amidopyrroles Exploiting the Self-Assembled Resorcinarene Capsule. Organic Letters, 2020, 22, 2590-2594.	4.6	12
64	Easy approach to chiral Michael adducts by Eu+3-catalyzed conjugate addition. Chirality, 2003, 15, 579-583.	2.6	8
65	Threading of Conformationally Stable Calix[6]arene Wheels Substituted at the Methylene Bridges. Journal of Organic Chemistry, 2019, 84, 11922-11927.	3.2	8
66	Antifungal peptides at membrane interaction. European Journal of Medicinal Chemistry, 2012, 51, 154-162.	5.5	7
67	Synthesis and biological evaluation of the progenitor of a new class of cephalosporin analogues, with a particular focus on structure-based computational analysis. PLoS ONE, 2017, 12, e0181563.	2.5	7
68	Synthesis, Characterization, and Solid-State Structure of [8]Cycloparaphenylenes with Inherent Chirality. Journal of Organic Chemistry, 2019, 84, 9489-9496.	3.2	7
69	Negative Solvatochromism in a <i>N</i> -Linked <i>p</i> -Pyridiniumcalix[4]arene Derivative. Organic Letters, 2019, 21, 2704-2707.	4.6	7
70	Enzymatic regio- and diastereoselective hydrolysis of peracetylated glycerol- and erythritol-β-glucosides. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2321-2324.	2.2	6
71	Green, Mild, and Efficient Friedel–Crafts Benzylation of Scarcely Reactive Arenes and Heteroarenes under Onâ€Water Conditions. ChemSusChem, 2019, 12, 1673-1683.	6.8	6
72	New compounds for a good old class: Synthesis of two Î'-lactam bearing cephalosporins and their evaluation with a multidisciplinary approach. Bioorganic and Medicinal Chemistry, 2020, 28, 115302.	3.0	6

#	Article	IF	CITATIONS
73	Solvent and Guest-Driven Supramolecular Organic Frameworks Based on a Calix[4]arene-tetrol: Channels vs Molecular Cavities. Crystal Growth and Design, 2021, 21, 6357-6363.	3.0	6
74	Carbocation catalysis in confined space: activation of trityl chloride inside the hexameric resorcinarene capsule. Chemical Science, 2022, 13, 8618-8625.	7.4	6
75	Solid-state assembly of a resorcin[6]arene in twin molecular capsules. CrystEngComm, 2016, 18, 5045-5049.	2.6	5
76	Calixarenes. , 2017, , 49-74.		5
77	A tetrasulfate-resorcin[6]arene cavitand as the host for organic ammonium guests. Organic Chemistry Frontiers, 2016, 3, 1276-1280.	4.5	4
78	Computational analysis of the interactions of a novel cephalosporin derivative with β-lactamases. BMC Structural Biology, 2018, 18, 13.	2.3	4
79	Synergic Interplay Between Halogen Bonding and Hydrogen Bonding in the Activation of a Neutral Substrate in a Nanoconfined Space. Angewandte Chemie, 2020, 132, 821-828.	2.0	4
80	Expanding Coefficient: A Parameter To Assess the Stability of Induced-Fit Complexes. Organic Letters, 2021, 23, 1804-1808.	4.6	4
81	Three Arachidonoylamide Derivatives Inhibit Pro-Inflammatory Genes Expression by Modulating NF-κB and AP1 Activities. Medicinal Chemistry, 2016, 12, 662-673.	1.5	4
82	Supramolecular synthons in the gamma-hydroxybutenolides. CrystEngComm, 2017, 19, 5079-5088.	2.6	3
83	Threading fluorescent calixarene-wheels with ammonium axles. Supramolecular Chemistry, 2018, 30, 627-641.	1.2	3
84	Large Calixarenes. , 2016, , 141-173.		2
85	Multiple threading of a triple-calix[6]arene host. Beilstein Journal of Organic Chemistry, 2019, 15, 2092-2104.	2.2	2
86	Unusual Calixarenes Incorporating Chromene and Benzofuran Moieties Obtained via Propargyl Claisen Rearrangement. Organic Letters, 2021, 23, 9283-9287.	4.6	2
87	Supramolecular catalysis in confined space: making the pyrogallol[4]arene capsule catalytically active in non-competitive solvent. Organic Chemistry Frontiers, 2022, 9, 2453-2463.	4.5	2
88	Co-conformational mechanoisomerism in a calix[6]arene-based [2]rotaxane. Supramolecular Chemistry, 2019, 31, 62-68.	1.2	1
89	Reactivity in a Self-assembled Organic Host. Monographs in Supramolecular Chemistry, 2021, , 133-166.	0.2	1
90	Mo(CO)6-Catalyzed Oxidation of Furan Derivatives to (E)- and (Z)-Enediones by Cumyl Hydroperoxide ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
91	A Convenient Catalytic Procedure for the Highly Enantioselective Aldol Condensation of O-Silyldienolates ChemInform, 2003, 34, no.	0.0	0
92	Silicon Tetrachloride in Organic Synthesis: New Applications for the Vinylogous Aldol Reaction ChemInform, 2005, 36, no.	0.0	0
93	Exploiting thep-Bromodienone Route for the Formation and Trapping of Calixarene Oxenium Cations with Enamine Nucleophiles. Journal of Organic Chemistry, 2018, 83, 5947-5953.	3.2	0
94	Frontispiece: The Hexameric Resorcinarene Capsule at Work: Supramolecular Catalysis in Confined Spaces. Chemistry - A European Journal, 2019, 25, .	3.3	0
95	Cephalosporins. , 2021, , 429-439.		0