Michael Hawrylycz

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11733960/michael-hawrylycz-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,987 24 37 39 h-index g-index citations papers 4.68 11,487 18.5 39 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
37	Comparative cellular analysis of motor cortex in human, marmoset and mouse. <i>Nature</i> , 2021 , 598, 111-	1 15 9.4	31
36	Consistent cross-modal identification of cortical neurons with coupled autoencoders <i>Nature Computational Science</i> , 2021 , 1, 120-127		8
35	The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. <i>Cell</i> , 2020 , 181, 936-953	8. €2 0≥	191
34	New light on cortical neuropeptides and synaptic network plasticity. <i>Current Opinion in Neurobiology</i> , 2020 , 63, 176-188	7.6	7
33	A community-based transcriptomics classification and nomenclature of neocortical cell types. <i>Nature Neuroscience</i> , 2020 , 23, 1456-1468	25.5	76
32	Conserved cell types with divergent features in human versus mouse cortex. <i>Nature</i> , 2019 , 573, 61-68	50.4	569
31	Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas. <i>PLoS ONE</i> , 2019 , 14, e0212898	3.7	6
30	Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. <i>ELife</i> , 2019 , 8,	8.9	36
29	Generalized leaky integrate-and-fire models classify multiple neuron types. <i>Nature Communications</i> , 2018 , 9, 709	17.4	83
28	Shared and distinct transcriptomic cell types across neocortical areas. <i>Nature</i> , 2018 , 563, 72-78	50.4	674
27	Transcriptomic Perspectives on Neocortical Structure, Development, Evolution, and Disease. <i>Annual Review of Neuroscience</i> , 2017 , 40, 629-652	17	61
26	Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. <i>Nature Neuroscience</i> , 2016 , 19, 335-46	25.5	1007
25	Inferring cortical function in the mouse visual system through large-scale systems neuroscience. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7337-44	11.5	55
24	Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 55	3.5	3
23	Canonical genetic signatures of the adult human brain. <i>Nature Neuroscience</i> , 2015 , 18, 1832-44	25.5	301
22	Exploration and visualization of connectivity in the adult mouse brain. <i>Methods</i> , 2015 , 73, 90-7	4.6	10
21	Cell-type-based model explaining coexpression patterns of genes in the brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 5397-402	11.5	51

20	Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas. <i>Quantitative Biology</i> , 2013 , 1, 91-100	3.9	9
19	Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. <i>Nucleic Acids Research</i> , 2013 , 41, D996-D1008	20.1	365
18	Digital atlasing and standardization in the mouse brain. <i>PLoS Computational Biology</i> , 2011 , 7, e1001065	5	77
17	Molecular and anatomical signatures of sleep deprivation in the mouse brain. <i>Frontiers in Neuroscience</i> , 2010 , 4, 165	5.1	70
16	Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. <i>Methods</i> , 2010 , 50, 105-12	4.6	57
15	Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex. <i>Methods</i> , 2010 , 50, 55-62	4.6	16
14	A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. <i>PLoS Computational Biology</i> , 2009 , 5, e1000334	5	206
13	An anatomic gene expression atlas of the adult mouse brain. <i>Nature Neuroscience</i> , 2009 , 12, 356-62	25.5	207
12	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. <i>Nature</i> , 2007 , 447, 799-816	50.4	4121
11	Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. <i>Nature Methods</i> , 2006 , 3, 511-8	21.6	270
10	Discovery of functional noncoding elements by digital analysis of chromatin structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16837-42	11.5	118
9	Genome-wide identification of DNasel hypersensitive sites using active chromatin sequence libraries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 453	3 7-4 5	121
8	High-throughput localization of functional elements by quantitative chromatin profiling. <i>Nature Methods</i> , 2004 , 1, 219-25	21.6	108
7	Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse		33
6	Consistent cross-modal identification of cortical neurons with coupled autoencoders		2
5	Cellular Anatomy of the Mouse Primary Motor Cortex		8
4	Single-cell RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates and humans		2
3	Shared and distinct transcriptomic cell types across neocortical areas		13

2 Conserved cell types with divergent features between human and mouse cortex

14

Single-Cell Transcriptomic Evidence for Dense Intracortical Neuropeptide Networks

1