Michael Hawrylycz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11733960/publications.pdf

Version: 2024-02-01

30	13,211	23	30
papers	citations	h-index	g-index
39	39	39	19996
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	27.8	4,709
2	Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 2016, 19, 335-346.	14.8	1,522
3	Shared and distinct transcriptomic cell types across neocortical areas. Nature, 2018, 563, 72-78.	27.8	1,323
4	Conserved cell types with divergent features in human versus mouse cortex. Nature, 2019, 573, 61-68.	27.8	1,198
5	Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Research, 2012, 41, D996-D1008.	14.5	614
6	The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell, 2020, 181, 936-953.e20.	28.9	597
7	Canonical genetic signatures of the adult human brain. Nature Neuroscience, 2015, 18, 1832-1844.	14.8	503
8	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	27.8	361
9	Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nature Methods, 2006, 3, 511-518.	19.0	306
10	An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 2009, 12, 356-362.	14.8	264
11	A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale. PLoS Computational Biology, 2009, 5, e1000334.	3.2	242
12	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	14.8	183
13	Generalized leaky integrate-and-fire models classify multiple neuron types. Nature Communications, 2018, 9, 709.	12.8	164
14	Discovery of functional noncoding elements by digital analysis of chromatin structure. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16837-16842.	7.1	135
15	Genome-wide identification of DNasel hypersensitive sites using active chromatin sequence libraries. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4537-4542.	7.1	128
16	High-throughput localization of functional elements by quantitative chromatin profiling. Nature Methods, 2004, 1, 219-225.	19.0	123
17	Digital Atlasing and Standardization in the Mouse Brain. PLoS Computational Biology, 2011, 7, e1001065.	3.2	109
18	Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. ELife, 2019, 8, .	6.0	98

#	Article	IF	CITATIONS
19	Molecular and anatomical signatures of sleep deprivation in the mouse brain. Frontiers in Neuroscience, 2010, 4, 165.	2.8	90
20	Transcriptomic Perspectives on Neocortical Structure, Development, Evolution, and Disease. Annual Review of Neuroscience, 2017, 40, 629-652.	10.7	85
21	Inferring cortical function in the mouse visual system through large-scale systems neuroscience. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7337-7344.	7.1	82
22	Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods, 2010, 50, 105-112.	3.8	70
23	Cell-type–based model explaining coexpression patterns of genes in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5397-5402.	7.1	66
24	Consistent cross-modal identification of cortical neurons with coupled autoencoders. Nature Computational Science, 2021, 1, 120-127.	8.0	29
25	New light on cortical neuropeptides and synaptic network plasticity. Current Opinion in Neurobiology, 2020, 63, 176-188.	4.2	26
26	Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex. Methods, 2010, 50, 55-62.	3.8	23
27	Exploration and visualization of connectivity in the adult mouse brain. Methods, 2015, 73, 90-97.	3.8	13
28	Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas. PLoS ONE, 2019, 14, e0212898.	2.5	11
29	Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas. Quantitative Biology, 2013, 1, 91-100.	0.5	9
30	Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain. Frontiers in Computational Neuroscience, 2015, 9, 55.	2.1	3