Hai-long Piao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1173383/hai-long-piao-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	1,581	18	39
papers	citations	h-index	g-index
55 ext. papers	2,358 ext. citations	11.5 avg, IF	4·45 L-index

#	Paper	IF	Citations
51	Low-dose metformin targets the lysosomal AMPK pathway through PEN2 <i>Nature</i> , 2022 , 603, 159-165	50.4	19
50	USP22 regulates lipidome accumulation by stabilizing PPARIIn hepatocellular carcinoma <i>Nature Communications</i> , 2022 , 13, 2187	17.4	3
49	Identification of serum metabolites enhancing inflammatory responses in COVID-19 <i>Science China Life Sciences</i> , 2022 , 1	8.5	O
48	Midkine noncanonically suppresses AMPK activation through disrupting the LKB1-STRAD-Mo25 complex <i>Cell Death and Disease</i> , 2022 , 13, 414	9.8	1
47	Hepatic MDM2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglyceride-VLDL Secretion via ApoB Degradation <i>Advanced Science</i> , 2022 , e2200742	13.6	O
46	RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	10
45	AQP3-mediated H O uptake inhibits LUAD autophagy by inactivating PTEN. <i>Cancer Science</i> , 2021 , 112, 3278-3292	6.9	6
44	Creatine promotes cancer metastasis through activation of Smad2/3. <i>Cell Metabolism</i> , 2021 , 33, 1111-1	1 2 7. 6 4	18
43	Rational Design of Crystallization-Induced-Emission Probes To Detect Amorphous Protein Aggregation in Live Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16067-16076	16.4	11
42	Rational Design of Crystallization-Induced-Emission Probes To Detect Amorphous Protein Aggregation in Live Cells. <i>Angewandte Chemie</i> , 2021 , 133, 16203-16212	3.6	О
41	YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. <i>Cancer Communications</i> , 2021 , 41, 576-595	9.4	3
40	Identification and Characterization of Robust Hepatocellular Carcinoma Prognostic Subtypes Based on an Integrative Metabolite-Protein Interaction Network. <i>Advanced Science</i> , 2021 , 8, e2100311	13.6	5
39	HRD1 inhibits fatty acid oxidation and tumorigenesis by ubiquitinating CPT2 in triple-negative breast cancer. <i>Molecular Oncology</i> , 2021 , 15, 642-656	7.9	7
38	Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. <i>Cell Research</i> , 2021 , 31, 478-481	24.7	6
37	The double-edged roles of ROS in cancer prevention and therapy. <i>Theranostics</i> , 2021 , 11, 4839-4857	12.1	60
36	Metabolomic Characterization Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell Carcinoma. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 721990	5.6	1
35	Stable Super-Resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen-Bond Sensitive Fluorogenic Probe. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2510	14 ¹ 25 ¹ 1	13 ⁷

(2019-2021)

Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. <i>Nature Metabolism</i> , 2021 , 3, 90-106	14.6	19
PTEN-deficient cells prefer glutamine for metabolic synthesis. <i>Acta Biochimica Et Biophysica Sinica</i> , 2020 , 52, 251-258	2.8	
A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. <i>Theranostics</i> , 2020 , 10, 2029-2046	12.1	14
Semi-Quantitatively Designing Two-Photon High-Performance Fluorescent Probes for Glutathione S-Transferases. <i>Research</i> , 2020 , 2020, 7043124	7.8	4
Cholesterol as a functional metabolite cooperates with metadherin in cancer cells. <i>Chinese Chemical Letters</i> , 2020 , 31, 1831-1834	8.1	1
Preparation and antitumor activity of selenium-modified glucomannan oligosaccharides. <i>Journal of Functional Foods</i> , 2020 , 65, 103731	5.1	8
A fluorophored electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. <i>Chemical Science</i> , 2020 , 11, 11205-11213	9.4	8
HDNA methylation data-based molecular subtype classification related to the prognosis of patients with hepatocellular carcinoma. <i>BMC Medical Genomics</i> , 2020 , 13, 118	3.7	1
An integrative pan-cancer analysis of biological and clinical impacts underlying ubiquitin-specific-processing proteases. <i>Oncogene</i> , 2020 , 39, 587-602	9.2	5
F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. <i>Theranostics</i> , 2020 , 10, 4150-4167	12.1	17
A Multidimensional Characterization of E3IJbiquitin Ligase and Substrate Interaction Network. <i>IScience</i> , 2019 , 16, 177-191	6.1	11
Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. <i>Cell Metabolism</i> , 2019 , 30, 508-524.e12	24.6	39
Label-free cell phenotypic study of FFA4 and FFA1 and discovery of novel agonists of FFA4 from natural products <i>RSC Advances</i> , 2019 , 9, 15073-15083	3.7	5
Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. <i>Cell Research</i> , 2019 , 29, 460-473	24.7	54
Comprehensive Profiling by Non-targeted Stable Isotope Tracing Capillary Electrophoresis-Mass Spectrometry: A New Tool Complementing Metabolomic Analyses of Polar Metabolites. <i>Chemistry - A European Journal</i> , 2019 , 25, 5427-5432	4.8	10
Identification of a long non-coding RNA-mediated competitive endogenous RNA network in hepatocellular carcinoma. <i>Oncology Reports</i> , 2019 , 42, 745-752	3.5	5
Integrated Metabolomics and Lipidomics Analyses Reveal Metabolic Reprogramming in Human Glioma with IDH1 Mutation. <i>Journal of Proteome Research</i> , 2019 , 18, 960-969	5.6	25
Metabolomics profiling of metformin-mediated metabolic reprogramming bypassing AMPK Metabolism: Clinical and Experimental, 2019 , 91, 18-29	12.7	15
	Nature Metabolism, 2021, 3, 90-106 PTEN-deficient cells prefer glutamine for metabolic synthesis. Acta Biochimica Et Biophysica Sinica, 2020, 52, 251-258 A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. Theranostics, 2020, 10, 2029-2046 Semi-Quantitatively Designing Two-Photon High-Performance Fluorescent Probes for Glutathione S-Transferases. Research, 2020, 2020, 7043124 Cholesterol as a functional metabolite cooperates with metadherin in cancer cells. Chinese Chemical Letters, 2020, 31, 1831-1834 Preparation and antitumor activity of selenium-modified glucomannan oligosaccharides. Journal of Functional Foods, 2020, 65, 103731 A fluorophorete electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. Chemical Science, 2020, 11, 11205-11213 HDNA methylation data-based molecular subtype classification related to the prognosis of patients with hepatocellular carcinoma. BMC Medical Genomics, 2020, 13, 118 An integrative pan-cancer analysis of biological and clinical impacts underlying ubiquitin-specific-processing proteases. Oncogene, 2020, 39, 587-602 F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics, 2020, 10, 4150-4167 A Multidimensional Characterization of E3/Ubiquitin Ligase and Substrate Interaction Network. Science, 2019, 16, 177-191 Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metabolism, 2019, 30, 508-524.e12 Label-free cell phenotypic study of FFAA and FFA1 and discovery of novel agonists of FFA4 from natural products RSC Advances, 2019, 9, 15073-15083 Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Research, 2019, 29, 460-473 Comprehensive Profiling by Non-targeted Stable Isotope Tracing Capillary Electrophoresis-Mass Spectrometry: A New Tool Complementing Metabolomic Analyses of P	Nature Metabolism, 2021, 3, 90-106 PTEN-deficient cells prefer glutamine for metabolic synthesis. Acta Biochimica Et Biophysica Sinica, 2020, 57, 251-258 A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. Theranastics, 2020, 10, 2029-2046 Semi-Quantitatively Designing Two-Photon High-Performance Fluorescent Probes for Glutathione 5-Transferases. Research, 2020, 2020, 7043124 Cholesterol as a functional metabolite cooperates with metadherin in cancer cells. Chinese Chemical Letters, 2020, 31, 1831-1834 Preparation and antitumor activity of selenium-modified glucomannan oligosaccharides. Journal of Functional Foods, 2020, 65, 103731 A fluorophored electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. Chemical Science, 2020, 11, 11205-11213 HDNA methylation data-based molecular subtype classification related to the prognosis of patients with hepatocellular carcinoma. BMC Medical Genomics, 2020, 13, 118 An integrative pan-cancer analysis of biological and clinical impacts underlying ubiquitin-specific-processing proteases. Oncogene, 2020, 39, 587-602 P-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics, 2020, 10, 4150-4167 A Multidimensional Characterization of E3IUbiquitin Ligase and Substrate Interaction Network. IScience, 2019, 16, 177-191 Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. 246 Label-free cell phenotypic study of FFA4 and FFA1 and discovery of novel agonists of FFA4 from natural products. RSC Advances, 2019, 9, 15073-15083 37 Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Research, 2019, 29, 460-473 Comprehensive Profiling by Non-targeted Stable Isotope Tracing Capillary Electrophoresis-Mass Spectrometry: A New Tool Complementing Metabolomic Analyses of Polar Metabolites. Chemistry-A Eu

16	SAR Studies of -[2-(1-Tetrazol-5-yl)phenyl]benzamide Derivatives as Potent G Protein-Coupled Receptor-35 Agonists. <i>ACS Medicinal Chemistry Letters</i> , 2018 , 9, 422-427	4.3	4
15	Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. <i>International Journal of Cancer</i> , 2018 , 143, 396-407	7.5	43
14	Biochemical reactions in metabolite-protein interaction. <i>Chinese Chemical Letters</i> , 2018 , 29, 645-647	8.1	7
13	USP10 suppresses tumor progression by inhibiting mTOR activation in hepatocellular carcinoma. <i>Cancer Letters</i> , 2018 , 436, 139-148	9.9	31
12	Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting Etatenin signaling. <i>Biomedicine and Pharmacotherapy</i> , 2018 , 108, 724-733	7.5	26
11	Long noncoding RNA MALAT1 suppresses breast cancer metastasis. <i>Nature Genetics</i> , 2018 , 50, 1705-17	1 5 6.3	335
10	LncRNA CamK-A Regulates Ca-Signaling-Mediated Tumor Microenvironment Remodeling. <i>Molecular Cell</i> , 2018 , 72, 71-83.e7	17.6	65
9	High-throughput metabolic profiling based on small amount of hepatic cells. <i>Electrophoresis</i> , 2017 , 38, 2296-2303	3.6	2
8	Induction of CYP1A1 increases gefitinib-induced oxidative stress and apoptosis in A549 cells. <i>Toxicology in Vitro</i> , 2017 , 44, 36-43	3.6	10
7	Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. <i>Nature</i> , 2017 , 548, 112-116	50.4	300
6	Identification of related metabolic pathways in prostate cancer. <i>Oncotarget</i> , 2017 , 8, 103032-103046	3.3	6
5	Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. <i>Scientific Reports</i> , 2016 , 6, 20984	4.9	82
4	Etatenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF- B signalling. <i>Nature Cell Biology</i> , 2014 , 16, 245-54	23.4	58
3	Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 2986-3000	7.6	26
2	Deubiquitylation and stabilization of PTEN by USP13. <i>Nature Cell Biology</i> , 2013 , 15, 1486-1494	23.4	119
1	Non-coding RNAs as regulators of mammary development and breast cancer. <i>Journal of Mammary Gland Biology and Neoplasia</i> , 2012 , 17, 33-42	2.4	68