Bert M Weckhuysen

List of Publications by Citations

Source: https://exaly.com/author-pdf/117338/bert-m-weckhuysen-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

773
papers
45,394
citations
103
h-index
g-index

879
ext. papers
9
ext. citations
9
L-index

#	Paper	IF	Citations
773	The catalytic valorization of lignin for the production of renewable chemicals. <i>Chemical Reviews</i> , 2010 , 110, 3552-99	68.1	3089
772	Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8164-215	16.4	1136
771	Catalytic dehydrogenation of light alkanes on metals and metal oxides. <i>Chemical Reviews</i> , 2014 , 114, 10613-53	68.1	1022
770	Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. <i>Catalysis Today</i> , 2003 , 78, 25-46	5.3	728
769	Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides. <i>Chemical Reviews</i> , 1996 , 96, 332	7 <i>6</i> 383±0	637
768	The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. <i>Chemical Society Reviews</i> , 2008 , 37, 2758-81	58.5	596
767	Structure and reactivity of surface vanadium oxide species on oxide supports. <i>Applied Catalysis A: General</i> , 1997 , 157, 67-90	5.1	549
766	New insights into the structure and composition of technical lignins: a comparative characterisation study. <i>Green Chemistry</i> , 2016 , 18, 2651-2665	10	491
765	Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. <i>Nature Nanotechnology</i> , 2012 , 7, 583-6	28.7	489
764	Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. <i>Chemical Society Reviews</i> , 2015 , 44, 7342-70	58.5	478
763	The Production of Propene Oxide: Catalytic Processes and Recent Developments. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3447-3459	3.9	388
762	Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. <i>ChemSusChem</i> , 2013 , 6, 1745-58	8.3	380
761	Stability and reactivity of ?-Illron carbide catalyst phases in Fischer-Tropsch synthesis: controlling (C). Journal of the American Chemical Society, 2010 , 132, 14928-41	16.4	343
760	Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. <i>Nature Chemistry</i> , 2012 , 4, 873-86	17.6	330
759	Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. <i>Nature</i> , 2008 , 456, 222-5	50.4	319
75 ⁸	Recent trends and fundamental insights in the methanol-to-hydrocarbons process. <i>Nature Catalysis</i> , 2018 , 1, 398-411	36.5	315
757	Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. <i>Journal of Catalysis</i> , 2009 , 264, 77-87	7.3	308

(2012-2009)

756	Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angewandte Chemie - International Edition, 2009 , 48, 4910-43	16.4	307
755	Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. <i>ChemSusChem</i> , 2013 , 6, 1595-614	8.3	304
754	Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-vis-near-IR, and kinetic study. <i>Journal of the American Chemical Society</i> , 2003 , 125, 7629-40	16.4	292
753	Alkane dehydrogenation over supported chromium oxide catalysts. <i>Catalysis Today</i> , 1999 , 51, 223-232	5.3	291
75 ²	In Situ Spectroscopic Investigation of Molecular Structures of Highly Dispersed Vanadium Oxide on Silica under Various Conditions. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 10842-10852	3.4	290
751	Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4809-4818	3.8	282
75°	A New Templated Ordered Structure with Combined Micro- and Mesopores and Internal Silica Nanocapsules. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 5873-5877	3.4	267
749	Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4351	3.6	266
748	Beyond Mechanical Recycling: Giving New Life to Plastic Waste. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15402-15423	16.4	265
747	Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. <i>Chemistry - A European Journal</i> , 2008 , 14, 11320-7	4.8	264
746	Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx. <i>ACS Catalysis</i> , 2013 , 3, 413-427	13.1	261
745	Complexity behind CO2 capture on NH2-MIL-53(Al). <i>Langmuir</i> , 2011 , 27, 3970-6	4	256
744	CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. <i>Journal of Catalysis</i> , 2012 , 285, 315-3	2 73 ³	240
743	Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability. <i>Journal of Catalysis</i> , 2013 , 301, 175-186	7.3	233
742	High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to Evalerolactone. <i>Nature Communications</i> , 2015 , 6, 6540	17.4	232
741	Shale gas revolution: an opportunity for the production of biobased chemicals?. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11980-7	16.4	232
740	Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situexperiments. Journal of Synchrotron Radiation, 2008 , 15, 632-40	2.4	231
739	Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. <i>ChemSusChem</i> , 2012 , 5, 1602-9	8.3	227

738	Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. <i>Chemical Communications</i> , 2002 , 97-110	5.8	227
737	Isolated Cu2+ ions: active sites for selective catalytic reduction of NO. <i>Chemical Communications</i> , 2011 , 47, 800-2	5.8	224
736	Unravelling structure sensitivity in CO2 hydrogenation over nickel. <i>Nature Catalysis</i> , 2018 , 1, 127-134	36.5	215
735	Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. <i>Nature Materials</i> , 2009 , 8, 959-65	27	213
734	A combined in situ time-resolved UVIV is, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. <i>Journal of Catalysis</i> , 2010 , 276, 268-279	7.3	212
733	Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites. <i>Journal of Catalysis</i> , 1998 , 175, 338-346	7.3	208
732	Selective Catalytic Reduction of NO with NH3over Supported Vanadia Catalysts. <i>Journal of Catalysis</i> , 1996 , 161, 211-221	7.3	208
731	Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Bristed acidity. <i>Chemistry - A European Journal</i> , 2011 , 17, 2874-84	4.8	205
730	The renaissance of the Sabatier reaction and its applications on Earth and in space. <i>Nature Catalysis</i> , 2019 , 2, 188-197	36.5	199
729	Spectroscopy and coordination chemistry of cobalt in molecular sieves. <i>Microporous and Mesoporous Materials</i> , 1998 , 22, 165-178	5.3	192
728	Thermally Stable and Regenerable Platinum-Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8986-8991	16.4	187
7 2 7	Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis. <i>Catalysis Today</i> , 2006 , 113, 3-15	5.3	175
726	Platinum-promoted Ga/AlDD highly active, selective, and stable catalyst for the dehydrogenation of propane. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9251-6	16.4	174
7 2 5	Combined DRSRSEXAFSXANESIIPR study of supported chromium catalysts. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 3245-3253		167
724	Olefin polymerization over supported chromium oxide catalysts. <i>Catalysis Today</i> , 1999 , 51, 215-221	5.3	164
723	Co3O4-SiO2 nanocomposite: a very active catalyst for CO oxidation with unusual catalytic behavior. Journal of the American Chemical Society, 2011 , 133, 11279-88	16.4	162
722	Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules. <i>Chemical Communications</i> , 2002 , 1010-1	5.8	159
721	Carbon Nanofiber Supported Transition-Metal Carbide Catalysts for the Hydrodeoxygenation of Guaiacol. <i>ChemCatChem</i> , 2013 , 5, 2964-2972	5.2	155

(2016-2001)

720	WCM-48-Supported Vanadium Oxide Catalysts, Prepared by the Molecular Designed Dispersion of VO(acac)2: A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx. <i>Journal of Catalysis</i> , 2001 , 197, 160-171	7.3	153
719	Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. <i>Catalysis Today</i> , 1999 , 49, 441-451	5.3	150
718	Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts. <i>Catalysis Letters</i> , 1998 , 52, 31-36	2.8	149
717	Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1639-50	3.6	148
716	Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. <i>Nature Chemistry</i> , 2018 , 10, 804-812	17.6	145
715	Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. <i>Green Chemistry</i> , 2013 , 15, 3049	10	144
714	Local and long range order in promoted iron-based Fischer Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study. <i>Journal of Catalysis</i> , 2009 , 262, 244-25	5 6 ·3	144
713	In Situ X-ray Absorption of Co/Mn/TiO2 Catalysts for Fischer Tropsch Synthesis. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16201-16207	3.4	144
712	Infrared and Raman imaging of heterogeneous catalysts. <i>Chemical Society Reviews</i> , 2010 , 39, 4615-25	58.5	143
711	A quantitative diffuse reflectance spectroscopy study of supported chromium catalysts. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 4756-4763		143
710	Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. <i>Green Chemistry</i> , 2010 , 12, 1225	10	139
709	Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. <i>Chemistry - A European Journal</i> , 2008 , 14, 2016-24	4.8	137
708	Role of Sn in the Regeneration of Pt/EAlO Light Alkane Dehydrogenation Catalysts. <i>ACS Catalysis</i> , 2016 , 6, 2257-2264	13.1	135
707	Cu-ZSM-5 Zeolites for the Formation of Methanol from Methane and Oxygen: Probing the Active Sites and Spectator Species. <i>Catalysis Letters</i> , 2010 , 138, 14-22	2.8	135
706	NaYF:Er,Yb/SiO Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K. Journal of Physical Chemistry C, 2017 , 121, 3503-3510	3.8	134
705	Propene epoxidation over Au/Ti-SBA-15 catalysts. <i>Journal of Catalysis</i> , 2007 , 248, 235-248	7.3	134
704	Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. <i>Journal of Catalysis</i> , 2010 , 270, 16-25	7.3	133
703	Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. <i>Angewandte Chemie</i> , 2016 , 128, 8296-8354	3.6	132

702	EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 5562-74	3.6	131
701	Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH. <i>Microporous and Mesoporous Materials</i> , 2010 , 132, 384-394	5.3	129
700	Initial Carbon-Carbon Bond Formation during the Early Stages of the Methanol-to-Olefin Process Proven by Zeolite-Trapped Acetate and Methyl Acetate. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15840-15845	16.4	128
699	ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to EValerolactone. <i>ACS Catalysis</i> , 2016 , 6, 5462-5472	13.1	127
698	Chemical imaging of catalytic solids with synchrotron radiation. <i>Chemical Society Reviews</i> , 2010 , 39, 465	6 5 825	125
697	Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 309-316	3.4	123
696	Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14548-56	16.4	123
695	Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures. <i>Journal of Molecular Catalysis A</i> , 1996 , 110, 41-54		123
694	Changing active sites in CutthA catalysts: deNOx selectivity as a function of the preparation method. <i>Microporous and Mesoporous Materials</i> , 2013 , 166, 144-152	5.3	121
693	Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites. <i>Journal of Catalysis</i> , 1998 , 175, 347-351	7.3	121
692	Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1570-84	6.4	121
691	The role of gold in gold-titania epoxidation catalysts. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1115-1118	16.4	118
690	Biomass conversion: Lignin up for break-down. <i>Nature Chemistry</i> , 2014 , 6, 1035-6	17.6	117
689	Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14454-65	16.4	116
688	Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. <i>Chemical Society Reviews</i> , 2015 , 44, 7406-28	58.5	113
687	Intergrowth structure of zeolite crystals as determined by optical and fluorescence microscopy of the template-removal process. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7228-31	16.4	113
686	An operando optical fiber UVII is spectroscopic study of the catalytic decomposition of NO and N2O over Cu-ZSM-5. <i>Journal of Catalysis</i> , 2003 , 220, 500-512	7.3	113
685	Influence of acidBase properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2MgO materials. Catalysis Science and Technology, 2015, 5, 2869-2879	5.5	110

684	Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. <i>Nature Chemistry</i> , 2011 , 3, 862-7	17.6	110
683	Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 3652-5	16.4	110
682	Visualizing the crystal structure and locating the catalytic activity of micro- and mesoporous ZSM-5 zeolite crystals by using in situ optical and fluorescence microscopy. <i>Chemistry - A European Journal</i> , 2008 , 14, 1718-25	4.8	110
681	Surface Acidity and Basicity of La2O3, LaOCl, and LaCl3 Characterized by IR Spectroscopy, TPD, and DFT Calculations. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15770-15781	3.4	110
680	In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. <i>ChemPhysChem</i> , 2010 , 11, 951-62	3.2	109
679	Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. <i>Nature Communications</i> , 2015 , 6, 7589	17.4	108
678	Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. <i>Green Chemistry</i> , 2015 , 17, 4383-4392	10	107
677	Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships. <i>Journal of Catalysis</i> , 1997 , 170, 75-88	7.3	107
676	Adding a third dimension to operando spectroscopy: a combined UV-Vis, Raman and XAFS setup to study heterogeneous catalysts under working conditions. <i>Chemical Communications</i> , 2005 , 3015-7	5.8	106
675	Infrared and Raman spectroscopic study of pH-induced structural changes of l-histidine in aqueous environment. <i>Vibrational Spectroscopy</i> , 2005 , 39, 114-125	2.1	105
674	In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts: 18O2¶6O2 Isotopic Labeling Studies. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 7382-7387	3.4	105
673	Diffuse reflectance spectroscopy study of the thermal genesis and molecular structure of chromium-supported catalysts. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 579-584		105
672	Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UVIIis and EXAFS study. <i>Vibrational Spectroscopy</i> , 2007 , 43, 140-151	2.1	104
671	Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM-5 as Revealed by Operando X-Ray Methods. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5215-9	16.4	103
670	Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19309-19	3.4	102
669	Spatially resolved UVIIis microspectroscopy on the preparation of alumina-supported Co Fischer II ropsch catalysts: Linking activity to Co distribution and speciation. <i>Journal of Catalysis</i> , 2006 , 242, 287-298	7.3	101
668	Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. <i>ChemSusChem</i> , 2011 , 4, 369-78	8.3	100
667	Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. <i>Nature Reviews Materials</i> , 2018 , 3, 324-340	73.3	99

666	Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiOEMgO catalysts. <i>ChemSusChem</i> , 2014 , 7, 2505-15	8.3	99
665	A combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12386-7	16.4	96
664	1s2p resonant inelastic X-ray scattering of iron oxides. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 20751	-6.4	96
663	X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8626-39	3.4	96
662	In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 14437-14442		96
661	Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 565-577	2.3	93
660	Life and death of a single catalytic cracking particle. Science Advances, 2015, 1, e1400199	14.3	91
659	Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. <i>Applied Catalysis B: Environmental</i> , 2014 , 154-155, 339-349	21.8	91
658	Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3Coating of Zeolite Y. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8005-8012	3.4	91
657	Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. <i>Chemical Science</i> , 2018 , 9, 6348-6360	9.4	90
656	Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. <i>Chemistry - A European Journal</i> , 2007 , 13, 7057-65	4.8	90
655	Trimodal Porous Hierarchical SSZ-13 Zeolite with Improved Catalytic Performance in the Methanol-to-Olefins Reaction. <i>ACS Catalysis</i> , 2016 , 6, 2163-2177	13.1	89
654	The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 260-272	21.8	89
653	Diffuse Reflectance Spectroscopy of Supported Chromium Oxide Catalysts: A Self-Modeling Mixture Analysis. <i>Journal of Catalysis</i> , 1997 , 166, 160-171	7.3	89
652	Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2275-86	16.4	89
651	Redox Behavior and Dispersion of Supported Chromium Catalysts. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 320-326		89
650	Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy. <i>ACS Catalysis</i> , 2017 , 7, 4033-4046	13.1	87
649	Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates: A Raman microspectroscopy study on the genesis of the active phase. <i>Journal of Catalysis</i> , 2006 , 243, 292	-302	87

(2014-2015)

648	Ex Situ and Operando Studies on the Role of Copper in Cu-Promoted SiO2MgO Catalysts for the Lebedev Ethanol-to-Butadiene Process. <i>ACS Catalysis</i> , 2015 , 5, 6005-6015	13.1	86	
647	Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species during Methanol to Olefins Conversion over H-SSZ-13. <i>ACS Catalysis</i> , 2015 , 5, 992-1003	13.1	86	
646	Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10148-52	16.4	86	
645	Homogeneity of Titania-Silica Mixed Oxides: On UV-DRS Studies as a Function of Titania Content. Journal of Catalysis, 1996 , 163, 489-491	7.3	86	
644	Reactivity Descriptor in Solid Acid Catalysis: Predicting Turnover Frequencies for Propene Methylation in Zeotypes. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1516-21	6.4	85	
643	The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 667-80	3.6	85	
642	Hard X-ray nanotomography of catalytic solids at work. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11986-90	16.4	84	
641	Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using C NMR and Comprehensive GC IGC. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4974-4985	8.3	84	
640	Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer ropsch catalysts. <i>Journal of Catalysis</i> , 2010 , 270, 95-102	7.3	83	
639	Electron paramagnetic resonance of heterogeneous chromium catalysts. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2431		83	
638	Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9. <i>Applied Catalysis A: General</i> , 2011 , 394, 79-85	5.1	82	
637	Oxidation of methane to methanol and formaldehyde over Co\(\mathbb{Z}\)SM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. <i>Microporous and Mesoporous Materials</i> , 2011 , 138, 176-183	5.3	81	
636	The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: the influence of the zeolite architecture. <i>Chemistry - A European Journal</i> , 2011 , 17, 13773-81	4.8	81	
635	In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3543-7	16.4	81	
634	Towards real-time spectroscopic process control for the dehydrogenation of propane over supported chromium oxide catalysts. <i>Chemical Engineering Science</i> , 2004 , 59, 5487-5492	4.4	80	
633	Synthesis, spectroscopy and catalysis of. <i>Chemistry - A European Journal</i> , 2000 , 6, 2960-70	4.8	80	
632	Nanosheets of Nonlayered Aluminum Metal-Organic Frameworks through a Surfactant-Assisted Method. <i>Advanced Materials</i> , 2018 , 30, e1707234	24	80	
631	Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/H-ZSM5. <i>Journal of Catalysis</i> , 2014 , 320, 33-41	7.3	79	

630	Insight into the Effect of Water on the Methanol-to-Olefins Conversion in H-SAPO-34 from Molecular Simulations and in Situ Microspectroscopy. <i>ACS Catalysis</i> , 2016 , 6, 1991-2002	13.1	78
629	Mapping metals incorporation of a whole single catalyst particle using element specific X-ray nanotomography. <i>Journal of the American Chemical Society</i> , 2015 , 137, 102-5	16.4	78
628	In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions. <i>Catalysis Today</i> , 1996 , 32, 47-55	5.3	77
627	Tandem Catalytic Depolymerization of Lignin by Water-Tolerant Lewis Acids and Rhodium Complexes. <i>ChemSusChem</i> , 2016 , 9, 2074-9	8.3	76
626	In situ spectroscopic investigation of the cobalt-catalyzed oxidation of lignin model compounds in ionic liquids. <i>Green Chemistry</i> , 2011 , 13, 671	10	76
625	Partial Oxidation of Methane Over Co-ZSM-5: Tuning the Oxygenate Selectivity by Altering the Preparation Route. <i>Catalysis Letters</i> , 2010 , 136, 52-56	2.8	76
624	Intergrowth structure of zeolite crystals and pore orientation of individual subunits revealed by electron backscatter diffraction/focused ion beam experiments. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5637-40	16.4	75
623	Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids. <i>Catalysis Science and Technology</i> , 2014 , 4, 2182	5.5	74
622	Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. <i>Nature Communications</i> , 2017 , 8, 1666	17.4	74
621	High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1836-40	16.4	74
620	Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12095-103	3.6	74
619	Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 211-6	3.6	73
618	KEDetected XANES of Framework-Substituted FeZSM-5 Zeolites. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 10002-10011	3.4	73
617	Operando spectroscopic investigation of supported metal oxide catalysts by combined time-resolved UV-VIS/Raman/on-line mass spectrometry. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4361-4365	3.6	73
616	Gold on Different Manganese Oxides: Ultra-Low-Temperature CO Oxidation over Colloidal Gold Supported on Bulk-MnO2 Nanomaterials. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9572-80	16.4	73
615	Synchrotron radiation effects on catalytic systems as probed with a combined in-situ UV-vis/XAFS spectroscopic setup. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 4042-7	3.4	71
614	Unique organic-inorganic interactions leading to a structure-directed microporous aluminophosphate crystallization as observed with in situ Raman spectroscopy. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11744-5	16.4	70
613	Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)Histidine Complexes. Journal of the American Chemical Society, 2000, 122, 11488-11496	16.4	70

612	On the surface chemistry of iron oxides in reactive gas atmospheres. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1584-8	16.4	69
611	Spatially resolved Raman and UV-visible-NIR spectroscopy on the preparation of supported catalyst bodies: controlling the formation of H2PMo11CoO40 5- inside Al2O3 pellets during impregnation. <i>Chemistry - A European Journal</i> , 2005 , 11, 4591-601	4.8	69
610	Stability of Pt/EAl2O3 Catalysts in Lignin and Lignin Model Compound Solutions under Liquid Phase Reforming Reaction Conditions. <i>ACS Catalysis</i> , 2013 , 3, 464-473	13.1	68
609	H2 adsorption on 3d transition metal clusters: a combined infrared spectroscopy and density functional study. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 1139-49	2.8	68
608	Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography. <i>ACS Catalysis</i> , 2016 , 6, 2178-2181	13.1	67
607	Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined EXRD-CT and Eabsorption-CT. <i>Chemical Science</i> , 2012 , 3, 509-523	9.4	67
606	Carboxylate binding in copper histidine complexes in solution and in zeolite Y: X- and W-band pulsed EPR/ENDOR combined with DFT calculations. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11733-45	16.4	67
605	Synthesis and chemistry of chromium in CrAPO-5 molecular sieves. <i>Zeolites</i> , 1994 , 14, 360-366		67
604	Highly active catalysts for the telomerization of crude glycerol with 1,3-butadiene. <i>ChemSusChem</i> , 2008 , 1, 193-6	8.3	66
603	New insights into the coordination chemistry and molecular structure of copper(II) histidine complexes in aqueous solutions. <i>Inorganic Chemistry</i> , 2006 , 45, 1960-71	5.1	66
602	In situ UVIV is diffuse reflectance spectroscopy Ibn line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design. <i>Journal of Molecular Catalysis A</i> , 2000 , 151, 115-131		66
601	Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose. <i>Green Chemistry</i> , 2018 , 20, 3499-3511	10	65
600	Isotherms of individual pores by gas adsorption crystallography. <i>Nature Chemistry</i> , 2019 , 11, 562-570	17.6	64
599	Nanoscale chemical imaging of the reduction behavior of a single catalyst particle. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 3632-6	16.4	64
598	Understanding carbon dioxide activation and carbon-carbon coupling over nickel. <i>Nature Communications</i> , 2019 , 10, 5330	17.4	64
597	Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34. <i>ACS Catalysis</i> , 2017 , 7, 5268-5281	13.1	63
596	Label-free chemical imaging of catalytic solids by coherent anti-Stokes Raman scattering and synchrotron-based infrared microscopy. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8990-4	16.4	63
595	Promotion effects in the oxidation of CO over zeolite-supported Pt nanoparticles. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3822-31	3.4	63

594	A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1368-71	16.4	63
593	Correlating metal poisoning with zeolite deactivation in an individual catalyst particle by chemical and phase-sensitive X-ray microscopy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 5983-7	16.4	62
592	Vanadium-Incorporated MCM-48 Materials: Optimization of the Synthesis Procedure and an in Situ Spectroscopic Study of the Vanadium Species. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 3393-3399	3.4	62
591	Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9456-9461		62
590	Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol-to-Hydrocarbons Process. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8095-8099	16.4	62
589	Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy. <i>Nature Communications</i> , 2016 , 7, 12634	17.4	61
588	Catalytic Conversion of Methane into Aromatic Hydrocarbons over Iron Oxide Loaded ZSM-5 Zeolites. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 2374-2376		61
587	X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. <i>Chemical Communications</i> , 2013 , 49, 4622-4	4 5.8	60
586	Single Molecule Nanospectroscopy Visualizes Proton-Transfer Processes within a Zeolite Crystal. Journal of the American Chemical Society, 2016 , 138, 13586-13596	16.4	60
585	Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations. <i>Chemistry - A European Journal</i> , 2013 , 19, 16595-606	5 ^{4.8}	59
584	Effect of the Nickel Precursor on the Impregnation and Drying of EAl2O3 Catalyst Bodies: A UVD is and IR Microspectroscopic Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7201-7209	3.8	59
583	Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation. <i>Journal of Power Sources</i> , 2014 , 256, 301-311	8.9	58
582	Mechanistic Studies on Chabazite-Type Methanol-to-Olefin Catalysts: Insights from Time-Resolved UV/Vis Microspectroscopy Combined with Theoretical Simulations. <i>ChemCatChem</i> , 2013 , 5, 173-184	5.2	58
581	In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: 18O2 1 6O2 Isotopic Labeling Studies. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 2793-2796	3.4	58
580	UV-Vis microspectroscopy: probing the initial stages of supported metal oxide catalyst preparation. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5024-5	16.4	58
579	Zeolite framework stabilized copper complex inspired by the 2-His-1-carboxylate facial triad motif yielding oxidation catalysts. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3208-17	16.4	58
578	Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 3773-3778	3.4	58
577	Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6559-68	16.4	57

576	Architecture-dependent distribution of mesopores in steamed zeolite crystals as visualized by FIB-SEM tomography. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1294-8	16.4	57
575	Noninvasive in situ visualization of supported catalyst preparations using multinuclear magnetic resonance imaging. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11916-7	16.4	57
574	New Insights into the Active Surface Species of Silver Alumina Catalysts in the Selective Catalytic Reduction of NO. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 885-896	3.8	56
573	Tomographic energy dispersive diffraction imaging to study the genesis of Ni nanoparticles in 3D within gamma-Al2O3 catalyst bodies. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16932-8	16.4	56
572	Electron Spin Resonance of High-Spin Cobalt in Microporous Crystalline Cobalt-Containing Aluminophosphates. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 37-42	3.4	56
571	Structure Sensitivity in Steam and Dry Methane Reforming over Nickel: Activity and Carbon Formation. <i>ACS Catalysis</i> , 2020 , 10, 1428-1438	13.1	56
570	Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11173-7	16.4	56
569	Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOx with NH3. <i>Catalysis Science and Technology</i> , 2018 , 8, 1028-1038	5.5	55
568	Combined EXAFS and STEM-EELS study of the electronic state and location of Mn as promoter in Co-based Fischer-Tropsch catalysts. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 568-72	3.6	55
567	Mechanistic Insight in the Ethane Dehydrogenation Reaction over Cr/Al2O3 Catalysts. <i>Catalysis Letters</i> , 2005 , 103, 143-148	2.8	55
566	Role of Magnesium Silicates in Wet-Kneaded SilicaMagnesia Catalysts for the Lebedev Ethanol-to-Butadiene Process. <i>ACS Catalysis</i> , 2016 , 6, 4034-4045	13.1	55
565	Phase segregation in cerium-lanthanum solid solutions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 9984	- <u>9</u> Q	54
564	Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 17671-7	3.4	54
563	Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides: Structural Characterization and Surface Properties. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 6211-6220	3.4	54
562	Chemistry and spectroscopy of vanadium in VAPO-5 molecular sieves. <i>Zeolites</i> , 1995 , 15, 482-489		54
561	Operando monitoring of temperature and active species at the single catalyst particle level. <i>Nature Catalysis</i> , 2019 , 2, 986-996	36.5	54
560	The Multifaceted Role of Methylaluminoxane in Metallocene-Based Olefin Polymerization Catalysis. <i>Macromolecules</i> , 2018 , 51, 343-355	5.5	53
559	Hydrogenation of levulinic acid to Evalerolactone over anatase-supported Ru catalysts: Effect of catalyst synthesis protocols on activity. <i>Applied Catalysis A: General</i> , 2018 , 549, 197-206	5.1	53

558	Enhanced Photoresponse of FeS Films: The Role of Marcasite-Pyrite Phase Junctions. <i>Advanced Materials</i> , 2016 , 28, 9602-9607	24	53
557	X-ray imaging of zeolite particles at the nanoscale: influence of steaming on the state of aluminum and the methanol-to-olefin reaction. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3616-9	16.4	53
556	Theoretical study on the role of surface basicity and lewis acidity on the etherification of glycerol over alkaline earth metal oxides. <i>Chemistry - A European Journal</i> , 2009 , 15, 10864-70	4.8	53
555	Mechanistic Insights into the Oxidation of Veratryl Alcohol with Co(salen) and Oxygen in Aqueous Media: An in-situ Spectroscopic Study. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 2591-2599	2.3	53
554	Giant and explosive plasmonic bubbles by delayed nucleation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7676-7681	11.5	52
553	CO2 Hydrogenation over Pt-Containing UiO-67 Zr-MOFsThe Base Case. <i>Industrial &</i> Engineering Chemistry Research, 2017 , 56, 13206-13218	3.9	52
552	Guestflost interactions of arenes in H-ZSM-5 and their impact on methanol-to-hydrocarbons deactivation processes. <i>Journal of Catalysis</i> , 2013 , 300, 235-241	7.3	52
551	An iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterization. <i>Applied Catalysis A: General</i> , 2009 , 363, 143-152	5.1	52
550	Study of the coordination of Cu2+ in zeolite Y: Interaction with water and ammonia. <i>Microporous and Mesoporous Materials</i> , 2000 , 37, 209-222	5.3	52
549	Nanoscale chemical imaging of solid-liquid interfaces using tip-enhanced Raman spectroscopy. <i>Nanoscale</i> , 2018 , 10, 1815-1824	7.7	51
548	Progress in controlling the size, composition and nanostructure of supported goldpalladium nanoparticles for catalytic applications. <i>Catalysis Science and Technology</i> , 2013 , 3, 2869	5.5	51
547	Surface chemistry of silicalitania-supported chromium oxide catalysts. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 953-961		51
546	Raman spectroscopy of supported chromium oxide catalysts. Determination of chromiumBxygen bond distances and bond orders. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 1969-1	973	51
545	Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. <i>Nature Protocols</i> , 2019 , 14, 1169-	1119.8	50
544	Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. <i>AICHE Journal</i> , 2018 , 64, 1910-1922	3.6	50
543	On the interaction between Co- and Mo-complexes in impregnation solutions used for the preparation of Al2O3-supported HDS catalysts: A combined Raman/UVIIisINIR spectroscopy study. <i>Catalysis Today</i> , 2008 , 130, 117-125	5.3	50
542	Modeling of kinetics and deactivation in the direct epoxidation of propene over goldlitania catalysts. <i>Journal of Catalysis</i> , 2005 , 236, 153-163	7.3	50
541	Surface- and Tip-Enhanced Raman Spectroscopy as Operando Probes for Monitoring and Understanding Heterogeneous Catalysis. <i>Catalysis Letters</i> , 2015 , 145, 40-57	2.8	49

540	In Situ Luminescence Thermometry To Locally Measure Temperature Gradients during Catalytic Reactions. <i>ACS Catalysis</i> , 2018 , 8, 2397-2401	13.1	49	
539	Chemical imaging of catalyst deactivation during the conversion of renewables at the single particle level: etherification of biomass-based polyols with alkenes over H-Beta zeolites. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10429-39	16.4	49	
538	Palladium-based telomerization of 1,3-butadiene with glycerol using methoxy-functionalized triphenylphosphine ligands. <i>Chemistry - A European Journal</i> , 2008 , 14, 8995-9005	4.8	49	
537	Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. <i>Nature Communications</i> , 2019 , 10, 167	17.4	49	
536	Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics. <i>ChemSusChem</i> , 2015 , 8, 3052-6	8.3	48	
535	X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes. <i>ChemCatChem</i> , 2015 , 7, 3674-3682	5.2	48	
534	Binder Effects in SiO- and AlO-Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy. <i>ChemCatChem</i> , 2015 , 7, 1312-1321	5.2	48	
533	Tomographic energy dispersive diffraction imaging as a tool to profile in three dimensions the distribution and composition of metal oxide species in catalyst bodies. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8832-5	16.4	48	
532	Monitoring transport phenomena of paramagnetic metal-ion complexes inside catalyst bodies with magnetic resonance imaging. <i>Chemistry - A European Journal</i> , 2008 , 14, 2363-74	4.8	48	
531	Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction. <i>Journal of Catalysis</i> , 2013 , 307, 185-193	7.3	47	
530	Atomic XAFS as a tool to probe the reactivity of metal oxide catalysts: quantifying metal oxide support effects. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3189-97	16.4	47	
529	LambdaO4 upside down: a new molecular structure for supported VO4 catalysts. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10223-33	3.4	47	
528	Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13632-13635	16.4	46	
527	In situ UVIIS diffuse reflectance spectroscopyIn-line activity measurements. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 2011-2014		46	
526	Spectroscopic evidence for the adsorption of propene on gold nanoparticles during the hydro-epoxidation of propene. <i>Journal of Catalysis</i> , 2008 , 258, 256-264	7.3	46	
525	Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 2673-2680	3.6	46	
524	Destructive adsorption of carbon tetrachloride on lanthanum and cerium oxides. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 3157-3162	3.6	46	
523	Zeolite Encaged Cu(Histidine) Complexes as Mimics of Natural Cu Enzymes. <i>Angewandte Chemie</i> International Edition in English, 1996 , 34, 2652-2654		46	

522	Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes. <i>Chemistry - A European Journal</i> , 2013 , 19, 11204-15	4.8	45
521	Full, Reactive Solubilization of Humin Byproducts by Alkaline Treatment and Characterization of the Alkali-Treated Humins Formed. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 533-543	8.3	45
520	Probing the transport of paramagnetic complexes inside catalyst bodies in a quantitative manner by magnetic resonance imaging. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7224-7	16.4	45
519	Effect of Mg and Zr Modification on the Activity of VOx/Al2O3 Catalysts in the Dehydrogenation of Butanes. <i>Journal of Catalysis</i> , 2001 , 203, 242-252	7.3	45
518	Diffuse Reflectance Spectroscopy of Dehydrated Cobalt-Exchanged Faujasite-Type Zeolites: A New Method for Co2+ Siting. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 15222-15228		45
517	Finned zeolite catalysts. <i>Nature Materials</i> , 2020 , 19, 1074-1080	27	45
516	Combined Operando X-ray Diffraction/Raman Spectroscopy of Catalytic Solids in the Laboratory: The Co/TiO Fischer-Tropsch Synthesis Catalyst Showcase. <i>ChemCatChem</i> , 2016 , 8, 1531-1542	5.2	45
515	Template-Framework Interactions in Tetraethylammonium-Directed Zeolite Synthesis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 16044-16048	16.4	44
514	Intergrowth structure and aluminium zoning of a zeolite ZSM-5 crystal as resolved by synchrotron-based micro X-ray diffraction imaging. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13382-6	16.4	44
513	Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. <i>ChemPhysChem</i> , 2013 , 14, 3655-66	3.2	44
512	Dynamic Cu/Zn Interaction in SiO2 Supported Methanol Synthesis Catalysts Unraveled by in Situ XAFS. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20175-20191	3.8	44
511	Synthesis of long alkyl chain ethers through direct etherification of biomass-based alcohols with 1-octene over heterogeneous acid catalysts. <i>Journal of Catalysis</i> , 2009 , 268, 251-259	7.3	44
510	In Situ Diffuse Reflectance Spectroscopy of Supported Chromium Oxide Catalysts: Kinetics of the Reduction Process with Carbon Monoxide. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 2824-2829	3.4	44
509	Range-extended EXAFS at the L edge of rare earths using high-energy-resolution fluorescence detection: A study of La in LaOCl. <i>Physical Review B</i> , 2005 , 72,	3.3	44
508	Suppression of the Aromatic Cycle in Methanol-to-Olefins Reaction over ZSM-5 by Post-Synthetic Modification Using Calcium. <i>ChemCatChem</i> , 2016 , 8, 3057-3063	5.2	44
507	Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance. <i>Catalysis Science and Technology</i> , 2016 , 6, 2663-2678	5.5	43
506	Combined Operando UV/Vis/IR Spectroscopy Reveals the Role of Methoxy and Aromatic Species during the Methanol-to-Olefins Reaction over H-SAPO-34. <i>ChemCatChem</i> , 2014 , 6, 3396-3408	5.2	43
505	Molecular structure of a supported VO4 cluster and its interfacial geometry as a function of the SiO2, Nb2O5, and ZrO2 support. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 14313-25	3.4	43

(2001-2004)

504	A new model for the molecular structure of supported vanadium oxide catalysts. <i>Chemical Physics Letters</i> , 2004 , 397, 277-281	2.5	43	
503	Low-temperature destruction of chlorinated hydrocarbons over lanthanide oxide based catalysts. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4730-2	16.4	43	
502	Core-shell H-ZSM-5/silicalite-1 composites: Brlisted acidity and catalyst deactivation at the individual particle level. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 15985-94	3.6	42	
501	Telomerization of 1,3-butadiene with various alcohols by Pd/TOMPP catalysts: new opportunities for catalytic biomass valorization. <i>Green Chemistry</i> , 2009 , 11, 1155	10	42	
500	Bis(mu-oxo)dicopper as key intermediate in the catalytic decomposition of nitric oxide. <i>ChemPhysChem</i> , 2003 , 4, 626-30	3.2	42	
499	Spectroscopic characterization of an MoOx layer on the surface of silica. An evaluation of the molecular designed dispersion method. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 4099-4104	3.6	42	
498	ESR Fine Structure of Manganese Ions in Zeolite A Detects Strong Variations of the Coordination Environment. <i>Journal of the American Chemical Society</i> , 1996 , 118, 9615-9622	16.4	42	
497	Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes. <i>Nature Chemistry</i> , 2019 , 11, 23-31	17.6	42	
496	Zeolites and Zeotypes for Oil and Gas Conversion. <i>Advances in Catalysis</i> , 2015 , 58, 143-314	2.4	41	
495	Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability. <i>Chemistry - A European Journal</i> , 2014 , 20, 16922-32	4.8	41	
494	Single-site heterogeneous Cr-based catalyst for the selective trimerisation of ethylene. <i>Chemical Communications</i> , 2005 , 1865-7	5.8	41	
493	Aqueous-phase reforming of crude glycerol: effect of impurities on hydrogen production. <i>Catalysis Science and Technology</i> , 2016 , 6, 134-143	5.5	40	
492	Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography. <i>Chemical Communications</i> , 2015 , 51, 8097-100	5.8	40	
491	The curious case of zeolite-clay/binder interactions and their consequences for catalyst preparation. <i>Faraday Discussions</i> , 2016 , 188, 369-86	3.6	40	
490	Platinum-Promoted Ga/Al2O3 as Highly Active, Selective, and Stable Catalyst for the Dehydrogenation of Propane. <i>Angewandte Chemie</i> , 2014 , 126, 9405-9410	3.6	40	
489	Staining of fluid-catalytic-cracking catalysts: localising Brfisted acidity within a single catalyst particle. <i>Chemistry - A European Journal</i> , 2012 , 18, 1094-101	4.8	40	
488	Integrated laser and electron microscopy correlates structure of fluid catalytic cracking particles to Brūsted acidity. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1428-31	16.4	40	
487	Monitoring Chromia/Alumina Catalysts in Situ during Propane Dehydrogenation by Optical Fiber UVI/isible Diffuse Reflectance Spectroscopy. <i>Journal of Catalysis</i> , 2001 , 204, 253-257	7.3	40	

486	Mechanistic Insights into Growth of Surface-Mounted Metal-Organic Framework Films Resolved by Infrared (Nano-) Spectroscopy. <i>Chemistry - A European Journal</i> , 2018 , 24, 187-195	4.8	40
485	Luminescence thermometry for in situ temperature measurements in microfluidic devices. <i>Lab on A Chip</i> , 2019 , 19, 1236-1246	7.2	39
484	Die Schiefergasrevolution: eine Chance zur Herstellung von Chemikalien auf Biobasis?. <i>Angewandte Chemie</i> , 2013 , 125, 12198-12206	3.6	39
483	In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12147-55	3.6	39
482	Enhanced activity of desilicated Cu-SSZ-13 for the selective catalytic reduction of NOx and its comparison with steamed Cu-SSZ-13. <i>Catalysis Science and Technology</i> , 2017 , 7, 3851-3862	5.5	39
481	Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy. <i>Chemistry - A European Journal</i> , 2015 , 21, 17324-35	4.8	39
480	Solid acid-catalyzed cellulose hydrolysis monitored by in situ ATR-IR spectroscopy. <i>ChemSusChem</i> , 2012 , 5, 430-7	8.3	39
479	Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. <i>Chemical Engineering Science</i> , 2019 , 198, 305-316	4.4	39
478	Single-catalyst particle spectroscopy of alcohol-to-olefins conversions: Comparison between SAPO-34 and SSZ-13. <i>Catalysis Today</i> , 2014 , 226, 14-24	5.3	38
477	Fe-catalyzed one-pot oxidative cleavage of unsaturated fatty acids into aldehydes with hydrogen peroxide and sodium periodate. <i>Chemistry - A European Journal</i> , 2013 , 19, 15012-8	4.8	38
476	Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy. <i>Chemistry - A European Journal</i> , 2017 , 23, 10915-10924	4.8	38
475	Operando UV-Vis spectroscopy of a catalytic solid in a pilot-scale reactor: deactivation of a CrO(x)/Al2O3 propane dehydrogenation catalyst. <i>Chemical Communications</i> , 2013 , 49, 1518-20	5.8	38
474	On the Active Oxygen in Bulk MoO3 during the Anaerobic Dehydrogenation of Methanol. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4890-4897	3.8	38
473	Hydrogen-induced transition from dissociative to molecular chemisorption of CO on vanadium clusters. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2516-20	16.4	38
472	The siting of Cu(II) in mordenite: a theoretical spectroscopic study. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 134-145	3.6	38
471	Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nature Catalysis, 2018 , 1, 23-31	36.5	38
470	In Situ Nanoscale Investigation of Catalytic Reactions in the Liquid Phase Using Zirconia-Protected Tip-Enhanced Raman Spectroscopy Probes. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1669-1675	6.4	37
469	Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. <i>Green Chemistry</i> , 2018 , 20, 3214-3221	10	37

468	Local silico-aluminophosphate interfaces within phosphated H-ZSM-5 zeolites. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 9892-903	3.6	37
467	Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study. <i>ChemPhysChem</i> , 2014 , 15, 283-92	3.2	37
466	Experimental and theoretical IR study of methanol and ethanol conversion over H-SAPO-34. <i>Catalysis Today</i> , 2011 , 177, 12-24	5.3	37
465	Alkaline treatment of template containing zeolites: Introducing mesoporosity while preserving acidity. <i>Catalysis Today</i> , 2011 , 168, 48-56	5.3	37
464	Magnetic resonance imaging studies on catalyst impregnation processes: discriminating metal ion complexes within millimeter-sized gamma-Al2O3 catalyst bodies. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6525-34	16.4	37
463	In-Situ Soft X-ray Absorption of Over-exchanged Fe/ZSM5. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13069-13075	3.4	37
462	Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO Reduction on Copper. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16576-16584	16.4	37
461	The role of synchrotron radiation in examining the self-assembly of crystalline nanoporous framework materials: from zeolites and aluminophosphates to metal organic hybrids. <i>Chemical Society Reviews</i> , 2010 , 39, 4767-82	58.5	36
460	Low-temperature destruction of carbon tetrachloride over lanthanide oxide-based catalysts: from destructive adsorption to a catalytic reaction cycle. <i>Chemistry - A European Journal</i> , 2004 , 10, 1637-46	4.8	36
459	New frontiers in X-ray spectroscopy in heterogeneous catalysis: Using Fe/ZSM-5 as test-system. <i>Catalysis Today</i> , 2005 , 110, 228-238	5.3	36
458	Nanoscale Sensors in Catalysis: All Eyes on Catalyst Particles. ACS Nano, 2020, 14, 3725-3735	16.7	36
457	Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins. <i>Catalysis Science and Technology</i> , 2016 , 6, 296-306	5.5	35
456	Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to Evalerolactone. <i>ChemSusChem</i> , 2017 , 10, 2891-2896	8.3	35
455	Cooperative Role of Water Molecules during the Initial Stage of Water-Induced Zeolite Dealumination. <i>ACS Catalysis</i> , 2019 , 9, 5119-5135	13.1	35
454	Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 7032-40	3.6	35
453	Combination of characterization techniques for atomic layer deposition MoO3 coatings: From the amorphous to the orthorhombic PMoO3 crystalline phase. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 01A107	2.9	35
452	Host-guest chemistry of copper(II)-histidine complexes encaged in zeolite Y. <i>Chemistry - A European Journal</i> , 2006 , 12, 7167-77	4.8	35
451	Relating Structure and Chemical Composition with Lewis Acidity in Zeolites: A Spectroscopic Study with Probe Molecules. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4904-4911	3.4	35

450	Deconvoluting the Competing Effects of Zeolite Framework Topology and Diffusion Path Length on Methanol to Hydrocarbons Reaction. <i>ACS Catalysis</i> , 2018 , 8, 11042-11053	13.1	35
449	Visualizing Dealumination of a Single Zeolite Domain in a Real-Life Catalytic Cracking Particle. Angewandte Chemie - International Edition, 2016 , 55, 11134-8	16.4	34
448	Initial Carbontarbon Bond Formation during the Early Stages of the Methanol-to-Olefin Process Proven by Zeolite-Trapped Acetate and Methyl Acetate. <i>Angewandte Chemie</i> , 2016 , 128, 16072-16077	3.6	34
447	Active phase distribution changes within a catalyst particle during Fischer Tropsch synthesis as revealed by multi-scale microscopy. <i>Catalysis Science and Technology</i> , 2016 , 6, 4438-4449	5.5	34
446	Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion. <i>ChemCatChem</i> , 2013 , 5, 2827-2831	5.2	34
445	Development of a 4,4?-biphenyl/phosphine-based COF for the heterogeneous Pd-catalysed telomerisation of 1,3-butadiene. <i>Catalysis Science and Technology</i> , 2013 , 3, 2571	5.5	34
444	On the synergistic catalytic properties of bimetallic mesoporous materials containing aluminum and zirconium: the Prins cyclisation of citronellal. <i>Chemistry - A European Journal</i> , 2011 , 17, 2077-88	4.8	34
443	Base-free Pd/TOMPP-catalyzed telomerization of 1,3-butadiene with carbohydrates and sugar alcohols. <i>ChemSusChem</i> , 2009 , 2, 855-8	8.3	34
442	The interpretation of sulfur K-edge XANES spectra: a case study on thiophenic and aliphatic sulfur compounds. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 2750-6	2.8	34
441	Insights into the preparation of supported catalysts: a spatially resolved Raman and UV-Vis spectroscopic study into the drying process of CoMo/gamma-Al2O3 catalyst bodies. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14513-22	3.4	34
440	Atomic XAFS as a tool to probe the electronic properties of supported noble metal nanoclusters. Journal of the American Chemical Society, 2005 , 127, 3272-3	16.4	34
439	Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties. <i>ACS Catalysis</i> , 2019 , 9, 4792-4803	13.1	33
438	Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5. <i>Catalysis Science and Technology</i> , 2018 , 8, 1632-1644	5.5	33
437	Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols. <i>Catalysis Science and Technology</i> , 2016 , 6, 5473-5482	5.5	33
436	Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis. <i>Green Chemistry</i> , 2016 , 18, 1605-1618	10	33
435	Profiling physicochemical changes within catalyst bodies during preparation: new insights from invasive and noninvasive microspectroscopic studies. <i>Accounts of Chemical Research</i> , 2010 , 43, 1279-88	24.3	33
434	Probing ZnAPO-34 Self-Assembly Using Simultaneous Multiple in Situ Techniques. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6331-6340	3.8	33
433	Unusual coordination behavior of Cr3+ in microporous aluminophosphates. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 716-22	3.4	33

432	Microspectroscopic insight into the deactivation process of individual cracking catalyst particles with basic sulfur components. <i>Applied Catalysis A: General</i> , 2012 , 419-420, 84-94	5.1	32
431	Relative activity of La2O3, LaOCl, and LaCl3 in reaction with CCl4 studied with infrared spectroscopy and density functional theory calculations. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 116	3 ² 4 ² 42	32
430	Low-temperature catalytic destruction of CCl4, CHCl3 and CH2Cl2 over basic oxides. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 5256	3.6	32
429	Chemistry and Spectroscopy of Chromium in Zeolites. <i>Studies in Surface Science and Catalysis</i> , 1994 , 84, 965-972	1.8	32
428	Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 257-261	16.4	32
427	Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy. <i>ACS Catalysis</i> , 2018 , 8, 2060-2070	13.1	31
426	Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11217-11221	16.4	31
425	Differences in the location of guest molecules within zeolite pores as revealed by multilaser excitation confocal fluorescence microscopy: which molecule is where?. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1916-28	16.4	31
424	3D nanoscale chemical imaging of the distribution of aluminum coordination environments in zeolites with soft X-ray microscopy. <i>ChemPhysChem</i> , 2013 , 14, 496-9	3.2	31
423	Closing the operando gap: The application of high energy photons for studying catalytic solids at work. <i>Applied Catalysis A: General</i> , 2011 , 391, 468-476	5.1	31
422	The effect of charge on CO binding in rhodium carbonyls: from bridging to terminal CO. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2126-7	16.4	31
421	Quantification and Classification of Carbonyls in Industrial Humins and Lignins by 19F NMR. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 965-972	8.3	30
420	In Situ Local Temperature Mapping in Microscopy Nano-Reactors with Luminescence Thermometry. <i>ChemCatChem</i> , 2019 , 11, 5505-5512	5.2	30
419	Thermally Stable TiO - and SiO -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts. <i>Chemistry - A European Journal</i> , 2018 , 24, 3733-3741	4.8	30
418	Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies. <i>Journal of Catalysis</i> , 2014 , 314, 94-100	7.3	30
4 ¹ 7	Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17774-87	16.4	30
416	The role of support oxygen in the epoxidation of propene over goldEitania catalysts investigated by isotopic transient kinetics. <i>Journal of Catalysis</i> , 2009 , 265, 161-169	7.3	30
4 ¹ 5	Destructive adsorption of CCl4 over lanthanum-based solids: linking activity to acid-base properties. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 23993-4001	3.4	30

414	Bis(1-methylimidazol-2-yl)propionates and Bis(1-methylbenzimidazol-2-yl)-propionates: A New Family of Biomimetic N,N,O Ligands E ynthesis, Structures and Cull Coordination Complexes. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 779-787	2.3	30
413	Die ndhste Generation des Recyclings Iheues Leben fd Kunststoffm (1. <i>Angewandte Chemie</i> , 2020 , 132, 15524-15548	3.6	29
412	Visualizing Dealumination of a Single Zeolite Domain in a Real-Life Catalytic Cracking Particle. <i>Angewandte Chemie</i> , 2016 , 128, 11300-11304	3.6	29
411	Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite. <i>Chemical Communications</i> , 2016 , 52, 3227-30	5.8	29
410	Highly Selective Bimetallic Pt-Cu/Mg(Al)O Catalysts for the Aqueous-Phase Reforming of Glycerol. <i>ChemCatChem</i> , 2013 , 5, 529-537	5.2	29
409	On the Polymerization Behavior of Telomers: Metathesis versus Thiol E ne Chemistry. <i>Macromolecules</i> , 2012 , 45, 1866-1878	5.5	29
408	An integrated AFM-Raman instrument for studying heterogeneous catalytic systems: a first showcase. <i>Chemical Communications</i> , 2012 , 48, 1742-4	5.8	29
407	Probing the different life stages of a fluid catalytic cracking particle with integrated laser and electron microscopy. <i>Chemistry - A European Journal</i> , 2013 , 19, 3846-59	4.8	29
406	New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 3681-5	3.6	29
405	Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils. <i>Vibrational Spectroscopy</i> , 2009 , 51, 205-212	2.1	29
404	Capturing the Genesis of an Active Fischer-Tropsch Synthesis Catalyst with Operando X-ray Nanospectroscopy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11957-11962	16.4	28
403	Fe(6-Me-PyTACN)-catalyzed, one-pot oxidative cleavage of methyl oleate and oleic acid into carboxylic acids with H2O2 and NaIO4. <i>Catalysis Science and Technology</i> , 2014 , 4, 708	5.5	28
402	Real-Time Quantitative Operando Raman Spectroscopy of a CrOx/Al2O3 Propane Dehydrogenation Catalyst in a Pilot-Scale Reactor. <i>ChemCatChem</i> , 2014 , 6, 3139-3145	5.2	28
401	X-Ray Imaging of SAPO-34 Molecular Sieves at the Nanoscale: Influence of Steaming on the Methanol-to-Hydrocarbons Reaction. <i>ChemCatChem</i> , 2013 , 5, 1386-1394	5.2	28
400	Correlating Metal Poisoning with Zeolite Deactivation in an Individual Catalyst Particle by Chemical and Phase-Sensitive X-ray Microscopy. <i>Angewandte Chemie</i> , 2013 , 125, 6099-6103	3.6	28
399	Real-time control of a catalytic solid in a fixed-bed reactor based on in situ spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 5412-6	16.4	28
398	Monitoring the coordination of aluminium during microporous oxide crystallisation by in situ soft X-ray absorption spectroscopy. <i>Chemical Communications</i> , 2006 , 4410-2	5.8	28
397	The effect of nutrient supplementation on the biofiltration removal of butanal in contaminated air. <i>Applied Microbiology and Biotechnology</i> , 1993 , 39, 395	5.7	28

396	Electron crystallography with the EIGER detector. <i>IUCrJ</i> , 2018 , 5, 190-199	4.7	28
395	Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM-5 as Revealed by Operando X-Ray Methods. <i>Angewandte Chemie</i> , 2016 , 128, 5301-5305	3.6	28
394	FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle. <i>ACS Catalysis</i> , 2016 , 6, 3158-3167	13.1	28
393	Characterization of deactivated and regenerated zeolite ZSM-5-based catalyst extrudates used in catalytic pyrolysis of biomass. <i>Journal of Catalysis</i> , 2019 , 380, 108-122	7.3	28
392	Skeletal isomerisation of oleic acid over ferrierite in the presence and absence of triphenylphosphine: Pore mouth catalysis and related deactivation mechanisms. <i>Journal of Catalysis</i> , 2014 , 316, 24-35	7.3	27
391	A UV-Vis micro-spectroscopic study to rationalize the influence of Cl(-)(aq) on the formation of different Pd macro-distributions on gamma-Al(2)O(3) catalyst bodies. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 97-107	3.6	27
390	Spatiotemporal Multitechnique Imaging of a Catalytic Solid in Action: Phase Variation and Volatilization During Molybdenum Oxide Reduction. <i>ChemCatChem</i> , 2009 , 1, 99-102	5.2	27
389	The Catalytic Conversion of Thiophenes over Large H-ZSM-5 Crystals: An X-Ray, UV/Vis, and Fluorescence Microspectroscopic Study. <i>ChemCatChem</i> , 2010 , 2, 564-571	5.2	27
388	Synthesis of octyl-ethers of biomass-based glycols through two competitive catalytic routes: Telomerization and etherification. <i>Catalysis Today</i> , 2010 , 158, 130-138	5.3	27
387	Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics. <i>Studies in Surface Science and Catalysis</i> , 1997 , 305-314	1.8	27
386	Dealing with a local heating effect when measuring catalytic solids in a reactor with Raman spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 2413-20	3.6	27
385	Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 13710-6	3.6	27
384	Thermally Stable and Regenerable Platinum I in Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. <i>Angewandte Chemie</i> , 2017 , 129, 9114-9119	3.6	26
383	Recovery and conversion of acetic acid from a phosphonium phosphinate ionic liquid to enable valorization of fermented wastewater. <i>Green Chemistry</i> , 2019 , 21, 2023-2034	10	26
382	Single-Particle Spectroscopy of Alcohol-to-Olefins over SAPO-34 at Different Reaction Stages: Crystal Accessibility and Hydrocarbons Reactivity. <i>ChemCatChem</i> , 2014 , 6, 772-783	5.2	26
381	Host-guest geometry in pores of zeolite ZSM-5 spatially resolved with multiplex CARS spectromicroscopy. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1343-7	16.4	26
380	Controlled assembly of a heterogeneous single-site ethylene trimerization catalyst as probed by X-ray absorption spectroscopy. <i>Chemistry - A European Journal</i> , 2006 , 12, 4756-63	4.8	26
379	The role of water in the epoxidation over gold-titania catalysts. <i>Chemical Communications</i> , 2005 , 6002-4	5.8	26

378	Highly mixed phases in ball-milled Cu/ZnO catalysts: an EXAFS and XANES study. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16892-901	3.4	26
377	Synthesis, characterization and catalysis of (Co, V)-, (Co, Cr)- and (Cr, V)APO-5 molecular sieves. <i>Microporous and Mesoporous Materials</i> , 2006 , 94, 348-357	5.3	26
376	Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. <i>Chemical Society Reviews</i> , 2020 , 49, 6694-6732	58.5	26
375	Geminal Diol of Dihydrolevoglucosenone as a Switchable Hydrotrope: A Continuum of Green Nanostructured Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 7878-7883	8.3	25
374	Polyethylene with Reverse Co-monomer Incorporation: From an Industrial Serendipitous Discovery to Fundamental Understanding. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13073-9	16.4	25
373	Geometric and Electronic Structure of Exygen Sites in Mn-ZSM-5 Zeolites. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12409-12416	3.8	25
372	Redox behaviour of over-exchanged Fe/ZSM5 zeolites studied with in-situ soft X-ray absorption spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4484-4491	3.6	25
371	A quantitative diffuse reflectance spectroscopy study of chromium-containing zeolites. <i>Zeolites</i> , 1994 , 14, 450-457		25
370	Chemically and thermally stable lanthanide-doped Y2O3 nanoparticles for remote temperature sensing in catalytic environments. <i>Chemical Engineering Science</i> , 2019 , 198, 235-240	4.4	25
369	Silica deposition as an approach for improving the hydrothermal stability of an alumina support during glycerol aqueous phase reforming. <i>Applied Catalysis A: General</i> , 2018 , 551, 13-22	5.1	25
368	Ethylene Polymerization over Metal Organic Framework Crystallites and the Influence of Linkers on Their Fracturing Process. <i>ACS Catalysis</i> , 2019 , 9, 3059-3069	13.1	24
367	Controlled Synthesis of Phase-Pure Zeolitic Imidazolate Framework Co-ZIF-9. European Journal of Inorganic Chemistry, 2015 , 2015, 1625-1630	2.3	24
366	Probing acid sites in solid catalysts with pyridine UV-Vis spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 21647-21659	3.6	24
365	Deactivation of Sn-Beta during carbohydrate conversion. <i>Applied Catalysis A: General</i> , 2018 , 564, 113-12	2 5.1	24
364	Large zeolite H-ZSM-5 crystals as models for the methanol-to-hydrocarbons process: bridging the gap between single-particle examination and bulk catalyst analysis. <i>Chemistry - A European Journal</i> , 2013 , 19, 8533-42	4.8	24
363	Increasing the availability of active sites in Zn-Co double metal cyanides by dispersion onto a SiO2 support. <i>Journal of Catalysis</i> , 2017 , 354, 92-99	7.3	24
362	Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides. <i>ChemSusChem</i> , 2009 , 2, 743-8	8.3	24
361	Facile access to key reactive intermediates in the Pd/PR3-catalyzed telomerization of 1,3-butadiene. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7972-5	16.4	24

(2012-2017)

36	A DNP-supported solid-state NMR study of carbon species in fluid catalytic cracking catalysts. Chemical Communications, 2017 , 53, 3933-3936	5.8	23	
359	Investigation of the Kinetics of a Surface Photocatalytic Reaction in Two Dimensions with Surface-enhanced Raman Scattering. <i>ChemCatChem</i> , 2014 , 6, 3342-3346	5.2	23	
358	Detection of carbocationic species in zeolites: large crystals pave the way. <i>Chemistry - A European Journal</i> , 2010 , 16, 9340-8	4.8	23	
357	Magnetic resonance imaging as an emerging tool for studying the preparation of supported catalysts. <i>Applied Catalysis A: General</i> , 2010 , 374, 126-136	5.1	23	
35	Mobility of chromium in inorganic oxides Spectroscopicfingerprinting of oxidation states and coordinationenvironments. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 2117-2120		23	
35.	Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene. <i>Journal of Catalysis</i> , 2008 , 259, 43-53	7.3	23	
354	Dichloromethane as a selective modifying agent to create a family of highly reactive chromium polymerization sites. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1465-8	16.4	23	
353	Hydrothermal synthesis of Co-rich CoAPO-5 molecular sieves. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 3240-3246	3.6	23	
35	Clay intercalated Cu(II) amino acid complexes: synthesis, spectroscopy and catalysis. <i>Clay Minerals</i> , 1996, 31, 491-500	1.3	23	
35	Separation and Purification of Hydrocarbons with Porous Materials. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18930-18949	16.4	23	
359	X-Ray Absorption Near Edge Structure Spectroscopy of a Solid Catalyst using a Laboratory-Based Set-up. <i>ChemCatChem</i> , 2019 , 11, 1039-1044	5.2	22	
34	Chemical probing within catalyst bodies by diagonal offset Raman spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 957-60	16.4	22	
34	Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts. <i>Topics in Catalysis</i> , 2017 , 60, 1522-1536	2.3	22	
34:	Effect of Feedstock and Catalyst Impurities on the Methanol-to-Olefin Reaction over H-SAPO-34. ChemCatChem, 2017 , 9, 183-194	5.2	22	
34	Nature of adsorbed species during the reduction of CrO3/SiO2with CO InsituFTIR spectroscopic study. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 4065-4069		22	
34.	A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics. <i>Angewandte Chemie</i> , 2016 , 128, 1390-1393	3.6	22	
34	High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles. <i>Angewandte Chemie</i> , 2015 , 127, 1856-1860	3.6	21	
34.	Tracing catalytic conversion on single zeolite crystals in 3D with nonlinear spectromicroscopy. Journal of the American Chemical Society, 2012 , 134, 1124-9	16.4	21	

342	Noninvasive Spatiotemporal Profiling of the Processes of Impregnation and Drying within Mo/Al2O3Catalyst Bodies by a Combination of X-ray Absorption Tomography and Diagonal Offset Raman Spectroscopy. <i>ACS Catalysis</i> , 2013 , 3, 339-347	13.1	21
341	Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy. <i>Microporous and Mesoporous Materials</i> , 2013 , 166, 86-	92 ^{5.3}	21
340	Prediction of long and short residue properties of crude oils from their infrared and near-infrared spectra. <i>Applied Spectroscopy</i> , 2008 , 62, 414-22	3.1	21
339	Promotion Effects in the Oxidation of CO over Zeolite-Supported Rh Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9394-9404	3.8	21
338	Dehydrochlorination of Intermediates in the Production of Vinyl Chloride over Lanthanum Oxide-Based Catalysts. <i>Catalysis Letters</i> , 2008 , 122, 238-246	2.8	21
337	Manganese promotion in cobalt-based Fischer-Tropsch catalysis. <i>Studies in Surface Science and Catalysis</i> , 2004 , 147, 271-276	1.8	21
336	On the synthesis of CoAPO-46, -11 and -44 molecular sieves from a Co(Ac)2[4H2O[Al(iPrO)3[H3PO4[Pr2NH[H2O gel via experimental design. <i>Microporous and Mesoporous Materials</i> , 1999 , 27, 75-86	5.3	21
335	Creating value from plastic waste. <i>Science</i> , 2020 , 370, 400-401	33.3	21
334	Nanoscale infrared imaging of zeolites using photoinduced force microscopy. <i>Chemical Communications</i> , 2017 , 53, 13012-13014	5.8	20
333	Unraveling the Homologation Reaction Sequence of the Zeolite-Catalyzed Ethanol-to-Hydrocarbons Process. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3908-3912	16.4	20
332	Electrolyte Effects on the Stability of Ni-Mo Cathodes for the Hydrogen Evolution Reaction. <i>ChemSusChem</i> , 2019 , 12, 3491-3500	8.3	20
331	Formation and Functioning of Bimetallic Nanocatalysts: The Power of X-ray Probes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13220-13230	16.4	20
330	Correlated X-ray Ptychography and Fluorescence Nano-Tomography on the Fragmentation Behavior of an Individual Catalyst Particle during the Early Stages of Olefin Polymerization. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3691-3695	16.4	20
329	Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10422-10435	16.4	20
328	Metal-Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation. <i>Chemistry - A European Journal</i> , 2018 , 24, 7498-7506	4.8	20
327	Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9154-9158	16.4	20
326	Dispersion and orientation of zeolite ZSM-5 crystallites within a fluid catalytic cracking catalyst particle. <i>Chemistry - A European Journal</i> , 2014 , 20, 3667-77	4.8	20
325	Experimental and computational evidence for the mechanism of intradiol catechol dioxygenation by non-heme iron(III) complexes. <i>Chemistry - A European Journal</i> , 2014 , 20, 15686-91	4.8	20

324	Hard X-ray Nanotomography of Catalytic Solids at Work. <i>Angewandte Chemie</i> , 2012 , 124, 12152-12156	3.6	20
323	Scanning transmission x-ray microscopy as a novel tool to probe colloidal and photonic crystals. <i>Small</i> , 2011 , 7, 804-11	11	20
322	The Effect of Chemical Composition and Structure on XPS Binding Energies in Zeolites. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 678-684	3.4	20
321	Incorporation of Transition Metal Ions in Aluminophosphate Molecular Sieves with AST Structure. Journal of Physical Chemistry B, 2001 , 105, 2677-2686	3.4	20
320	Mapping Elevated Temperatures with a Micrometer Resolution Using the Luminescence of Chemically Stable Upconversion Nanoparticles. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4208-4215	5.6	20
319	Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis. <i>Chemistry - A European Journal</i> , 2016 , 22, 199-210	4.8	20
318	In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy to Unravel Sequential Hydrogenation of Phenylacetylene over Platinum Nanoparticles. <i>ACS Catalysis</i> , 2019 , 9, 10794-10802	13.1	19
317	Separation of time-resolved phenomena in surface-enhanced Raman scattering of the photocatalytic reduction of p-nitrothiophenol. <i>ChemPhysChem</i> , 2015 , 16, 547-54	3.2	19
316	Selective staining of Bristed acidity in zeolite ZSM-5-based catalyst extrudates using thiophene as a probe. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21531-42	3.6	19
315	Pd/TOMPP-catalysed telomerisation of 1,3-butadiene with lignin-type phenols and thermal Claisen rearrangement of linear telomers. <i>Catalysis Science and Technology</i> , 2013 , 3, 1215-1223	5.5	19
314	Skeletal isomerisation of oleic acid over ferrierite: Influence of acid site number, accessibility and strength on activity and selectivity. <i>Journal of Catalysis</i> , 2015 , 329, 195-205	7.3	19
313	Sulfur Speciation of Crude Oils by Partial Least Squares Regression Modeling of Their Infrared Spectra. <i>Energy & Discourt Spectra Energy & Discourt Energy & Discourt Spectra Energy & Discourt Spectra</i>	4.1	19
312	Unified internal architecture and surface barriers for molecular diffusion of microporous crystalline aluminophosphates. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6790-4	16.4	19
311	Solvent effects in the synthesis of CoAPO-5, -11 and -34 molecular sieves. <i>Microporous and Mesoporous Materials</i> , 2005 , 84, 116-126	5.3	19
310	Catalytic Fast Pyrolysis of Biomass: Catalyst Characterization Reveals the Feed-Dependent Deactivation of a Technical ZSM-5-Based Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 291-304	8.3	19
309	Microfluidics and catalyst particles. <i>Lab on A Chip</i> , 2019 , 19, 3575-3601	7.2	18
308	Catalytic Hydrogenation of Renewable Levulinic Acid to EValerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5903-5919	8.3	18
307	Structureperformance relationships of Cr/Ti/SiO2 catalysts modified with TEAl for oligomerisation of ethylene: tuning the selectivity towards 1-hexene. <i>Catalysis Science and Technology</i> , 2016 , 6, 731-743	5.5	18

306	Imaging the effect of a hydrothermal treatment on the pore accessibility and acidity of large ZSM-5 zeolite crystals by selective staining. <i>Catalysis Science and Technology</i> , 2013 , 3, 1208-1214	5.5	18
305	Styrene oligomerization as a molecular probe reaction for BrEsted acidity at the nanoscale. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 6967-73	3.6	18
304	X-ray Imaging of Zeolite Particles at the Nanoscale: Influence of Steaming on the State of Aluminum and the Methanol-To-Olefin Reaction. <i>Angewandte Chemie</i> , 2012 , 124, 3676-3679	3.6	18
303	Functional groups and sulfur K-edge XANES spectra: divalent sulfur and disulfides. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 9523-8	2.8	18
302	Cyclohexene Epoxidation with Cyclohexyl Hydroperoxide: A Catalytic Route to Largely Increase Oxygenate Yield from Cyclohexane Oxidation. <i>ACS Catalysis</i> , 2011 , 1, 1183-1192	13.1	18
301	Molecular adsorption of H2 on small cationic nickel clusters. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5743-5	3.6	18
300	Scaffolded amino acids as a close structural mimic of type-3 copper binding sites. <i>Chemical Communications</i> , 2007 , 4895-7	5.8	18
299	Intermediates in the destruction of chlorinated C1 hydrocarbons on La-based materials: mechanistic implications. <i>Chemistry - A European Journal</i> , 2007 , 13, 9561-71	4.8	18
298	On the synthesis of vanadium containing molecular sieves by experimental design from a VOSO4I5H2OIAl(iPrO)3IPr2NHIH2O gel: occurrence of VAPO-41 as a secondary structure in the synthesis of VAPO-11. <i>Microporous and Mesoporous Materials</i> , 2000 , 39, 493-507	5.3	18
297	Direct observation of the electronic states of photoexcited hematite with ultrafast 2p3d X-ray absorption spectroscopy and resonant inelastic X-ray scattering. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 2685-2692	3.6	18
296	Combined In Situ X-ray Powder Diffractometry/Raman Spectroscopy of Iron Carbide and Carbon Species Evolution in Fe(NaB)/HAl2O3 Catalysts during Fischer Tropsch Synthesis. <i>ACS Catalysis</i> , 2020 , 10, 9837-9855	13.1	18
295	Spectroscopic study on the active site of a SiO2 supported niobia catalyst used for the gas-phase Beckmann rearrangement of cyclohexanone oxime to Etaprolactam. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 22636-46	3.6	18
294	Identifying key mononuclear Fe species for low-temperature methane oxidation. <i>Chemical Science</i> , 2021 , 12, 3152-3160	9.4	18
293	Deactivation of Cu-Exchanged Automotive-Emission NH -SCR Catalysts Elucidated with Nanoscale Resolution Using Scanning Transmission X-ray Microscopy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15610-15617	16.4	18
292	Oxygen Vacancies in Reduced Rh/ and Pt/Ceria for Highly Selective and Reactive Reduction of NO into N2 in excess of O2. <i>ChemCatChem</i> , 2017 , 9, 2935-2938	5.2	17
291	Zeolite molecular accessibility and host-guest interactions studied by adsorption of organic probes of tunable size. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 1857-1867	3.6	17
290	Role of Rare Earth Ions in the Prevention of Dealumination of Zeolite Y for Fluid Cracking Catalysts. Journal of Physical Chemistry C, 2020 , 124, 4626-4636	3.8	17
289	Cobalt nanocrystals on carbon nanotubes in the Fischer-Tropsch synthesis: Impact of support oxidation. <i>Applied Catalysis A: General</i> , 2020 , 593, 117441	5.1	17

288	Disentangling Reaction Processes of Zeolites within Single-Oriented Channels. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15502-15506	16.4	17	
287	Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 9806-	983.6	17	
286	Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal-Organic Framework Thin Films. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1838-1844	6.4	17	
285	Real-time Analysis of a Working Triethylaluminium-Modified Cr/Ti/SiO Ethylene Polymerization Catalyst with In Situ Infrared Spectroscopy. <i>ChemCatChem</i> , 2016 , 8, 1937-1944	5.2	17	
284	Selectivity Control in the Tandem Aromatization of Bio-Based Furanics Catalyzed by Solid Acids and Palladium. <i>ChemSusChem</i> , 2017 , 10, 277-286	8.3	17	
283	Promotion Effects in the Reduction of NO by CO over Zeolite-Supported Rh Catalysts. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2282-2292	3.8	17	
282	Controlling the bonding of CO on cobalt clusters by coadsorption of H2. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 5317-20	16.4	17	
281	Pore curvature and support composition effects on the electronic properties of supported Pt catalysts: An infrared spectroscopy study with CO as probe molecule. <i>Vibrational Spectroscopy</i> , 2008 , 48, 92-100	2.1	17	
280	Synthesis and spectroscopy of clay intercalated Cu(II) bio-monomer complexes: coordination of Cu(II) with purines and nucleotides. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 2875-2880	3.6	17	
279	The concept of active site in heterogeneous catalysis. <i>Nature Reviews Chemistry</i> , 2022 , 6, 89-111	34.6	17	
278	Highly Selective Oxidation of Methane into Methanol over Cu-Promoted Monomeric Fe/ZSM-5. <i>ACS Catalysis</i> , 2021 , 11, 6684-6691	13.1	17	
277	1s3p Resonant Inelastic X-ray Scattering of Cobalt Oxides and Sulfides. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 24063-24069	3.8	17	
276	Operando micro-spectroscopy on ZSM-5 containing extrudates during the oligomerization of 1-hexene. <i>Catalysis Science and Technology</i> , 2018 , 8, 2175-2185	5.5	16	
275	A metal-free, one-pot method for the oxidative cleavage of internal aliphatic alkenes into carboxylic acids. <i>RSC Advances</i> , 2013 , 3, 6606	3.7	16	
274	Dynamic X-Ray Diffraction Computed Tomography Reveals Real-Time Insight into Catalyst Active Phase Evolution. <i>Angewandte Chemie</i> , 2011 , 123, 10330-10334	3.6	16	
273	Nickel Poisoning of a Cracking Catalyst Unravelled by Single-Particle X-ray Fluorescence-Diffraction-Absorption Tomography. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3922-3927	16.4	16	
272	Insights into the activation of silica-supported metallocene olefin polymerization catalysts by methylaluminoxane. <i>Catalysis Today</i> , 2019 , 334, 223-230	5.3	16	
271	Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules. <i>Chemistry - A European Journal</i> , 2017 , 23, 6305-6314	4.8	15	

270	Phase-Dependent Stability and Substrate-Induced Deactivation by Strong Metal-Support Interaction of Ru/TiO2 Catalysts for the Hydrogenation of Levulinic Acid. <i>ChemCatChem</i> , 2019 , 11, 2079	ı <u>-2∵</u> 88	15
269	Differences in single and aggregated nanoparticle plasmon spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 2991-5	3.6	15
268	Selective staining of zeolite acidity: Recent progress and future perspectives on fluorescence microscopy. <i>Microporous and Mesoporous Materials</i> , 2014 , 189, 136-143	5.3	15
267	Telomerization of 1,3-Butadiene with Biomass-Derived Alcohols over a Heterogeneous Pd/TPPTS Catalyst Based on Layered Double Hydroxides. <i>ACS Catalysis</i> , 2011 , 1, 526-536	13.1	15
266	Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5002-4	16.4	15
265	Spectroscopic characterization of supported Cr and Cr, Ti catalysts: Interaction with probe molecules. <i>Studies in Surface Science and Catalysis</i> , 1995 , 91, 151-158	1.8	15
264	Propane to olefins tandem catalysis: a selective route towards light olefins production. <i>Chemical Society Reviews</i> , 2021 , 50, 11503-11529	58.5	15
263	Reusable MgAl hydrotalcites for the catalytic synthesis of diglycerol dicarbonate from diglycerol and dimethyl carbonate. <i>Catalysis Today</i> , 2015 , 257, 274-280	5.3	14
262	Studying birth, life and death of catalytic solids with operando spectroscopy. <i>National Science Review</i> , 2015 , 2, 147-149	10.8	14
261	Carbon Pathways, Sodium-Sulphur Promotion and Identification of Iron Carbides in Iron-based Fischer-Tropsch Synthesis. <i>ChemCatChem</i> , 2020 , 12, 4202-4223	5.2	14
260	Mechanistic insights in the olefin epoxidation with cyclohexyl hydroperoxide. <i>Catalysis Science and Technology</i> , 2012 , 2, 951	5.5	14
259	Mechanistic Study of the Pd/TOMPP-Catalyzed Telomerization of 1,3-Butadiene with Biomass-Based Alcohols: On the Reversibility of Phosphine Alkylation. <i>ChemCatChem</i> , 2011 , 3, 845-852	5.2	14
258	Optical investigation of the intergrowth structure and accessibility of Brfisted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy. <i>Langmuir</i> , 2010 , 26, 16510-6	4	14
257	Chemical Reactivity Indices as a Tool for Understanding the Support-Effect in Supported Metal Oxide Catalysts. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 19905-19912	3.8	14
256	AlOxCoating of Ultrastable Zeolite Y:□A Possible Method for Vanadium Passivation of FCC Catalysts. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9195-9202	3.4	14
255	Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. <i>Nature Reviews Chemistry</i> , 2021 , 1-18	34.6	14
254	Plastic Waste Conversion over a Refinery Waste Catalyst. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16101-16108	16.4	14
253	Reversible and Site-Dependent Proton-Transfer in Zeolites Uncovered at the Single-Molecule Level. Journal of the American Chemical Society, 2018 , 140, 14195-14205	16.4	14

(2020-2018)

252	Practical Guidelines for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Heterogeneous Catalysts. <i>ChemPhysChem</i> , 2018 , 19, 2461-2467	3.2	14
251	Vibrational Fingerprinting of Defects Sites in Thin Films of Zeolitic Imidazolate Frameworks. <i>Chemistry - A European Journal</i> , 2019 , 25, 8070-8084	4.8	13
250	Scaling-Up of Bio-Oil Upgrading during Biomass Pyrolysis over ZrO /ZSM-5-Attapulgite. <i>ChemSusChem</i> , 2019 , 12, 2428-2438	8.3	13
249	Uniformly Oriented Zeolite ZSM-5 Membranes with Tunable Wettability on a Porous Ceramic. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12458-12462	16.4	13
248	Revealing long- and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 27766-27777	3.6	13
247	Recent advances in secondary ion mass spectrometry of solid acid catalysts: large zeolite crystals under bombardment. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5465-74	3.6	13
246	KIDetected High-Resolution XANES of FeII and FeIII Models of the 2-His-1-Carboxylate Motif: Analysis of the Carboxylate Binding Mode. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 1589-1	5 3 ₹	13
245	Chemometric analysis of diffuse reflectance spectra of Co2+-exchanged zeolites: spectroscopic fingerprinting of coordination environments. <i>Analytica Chimica Acta</i> , 1997 , 348, 267-272	6.6	13
244	Turning a Cr-based heterogeneous ethylene polymerisation catalyst into a selective ethylene trimerisation catalyst. <i>Journal of Molecular Catalysis A</i> , 2007 , 269, 5-11		13
243	Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: correlation between the VV coordination number and distance and the point of zero charge of the support oxide. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 4814-24	3.6	13
242	Plugged Hexagonal Mesoporous Templated Silica: A unique micro- and mesoporous material with internal silica nanocapsules <i>Studies in Surface Science and Catalysis</i> , 2002 , 141, 45-52	1.8	13
241	Synthesis of Co-rich CoAPO-CHA molecular sieves in the presence of ethanol and caesium. <i>Chemical Communications</i> , 2000 , 2249-2250	5.8	13
240	WaterEctive site interactions in zeolites and their relevance in catalysis. <i>Trends in Chemistry</i> , 2021 , 3, 456-468	14.8	13
239	Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography. <i>Angewandte Chemie</i> , 2016 , 128, 11339-11343	3.6	13
238	In situ Nanoscale Infrared Spectroscopy of Water Adsorption on Nanoislands of Surface-Anchored Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 1620-1624	16.4	13
237	Single-molecule observation of diffusion and catalysis in nanoporous solids. <i>Adsorption</i> , 2021 , 27, 423-4	52 6	13
236	Catalytic production of hexane-1,2,5,6-tetrol from bio-renewable levoglucosanol in water: effect of metal and acid sites on (stereo)-selectivity. <i>Green Chemistry</i> , 2018 , 20, 4557-4565	10	13
235	Alkali Promotion in the Formation of CH4 from CO2 and Renewably Produced H2 over Supported Ni Catalysts. <i>ChemCatChem</i> , 2020 , 12, 2792-2800	5.2	12

234	Tandem catalytic aromatization of volatile fatty acids. <i>Green Chemistry</i> , 2020 , 22, 3229-3238	10	12
233	X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7496-500	16.4	12
232	Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanol-to-Hydrocarbons Process. <i>Angewandte Chemie</i> , 2018 , 130, 8227-8231	3.6	12
231	Catalytic oxidative cleavage of catechol by a non-heme iron(III) complex as a green route to dimethyl adipate. <i>Chemical Communications</i> , 2013 , 49, 6912-4	5.8	12
230	Intergrowth Structure and Aluminium Zoning of a Zeolite ZSM-5 Crystal as Resolved by Synchrotron-Based Micro X-Ray Diffraction Imaging. <i>Angewandte Chemie</i> , 2013 , 125, 13624-13628	3.6	12
229	Template removal processes within individual micron-sized SAPO-34 crystals: Effect of gas atmosphere and crystal size. <i>Microporous and Mesoporous Materials</i> , 2011 , 146, 28-35	5.3	12
228	Spatial and temporal mapping of coke formation during paraffin and olefin aromatization in individual H-ZSM-5 crystals. <i>Applied Catalysis A: General</i> , 2011 , 404, 12-20	5.1	12
227	Protonation of the oxygen axial ligand in galactose oxidase model compounds as seen with high resolution X-ray emission experiments and FEFF simulations. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 5600-4	3.6	12
226	A Combined Multi-Technique In Situ Approach Used to Probe the Stability of Iron Molybdate Catalysts During Redox Cycling. <i>Topics in Catalysis</i> , 2009 , 52, 1400-1409	2.3	12
225	Prediction of Long-Residue Properties of Potential Blends from Mathematically Mixed Infrared Spectra of Pure Crude Oils by Partial Least-Squares Regression Models. <i>Energy & Discounty Energy</i> 23, 2164-2168	4.1	12
224	Influence of Levulinic Acid Hydrogenation on Aluminum Coordination in Zeolite-Supported Ruthenium Catalysts: A Al 3QMAS Nuclear Magnetic Resonance Study. <i>ChemPhysChem</i> , 2018 , 19, 379-3	885 ²	12
223	3D Raman Spectroscopy of Large Zeolite ZSM-5 Crystals. <i>Chemistry - A European Journal</i> , 2019 , 25, 7158	8-7.1867	11
222	In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Nickel-Catalyzed Hydrogenation Reactions. <i>ChemPhysChem</i> , 2020 , 21, 625-632	3.2	11
221	Template B ramework Interactions in Tetraethylammonium-Directed Zeolite Synthesis. <i>Angewandte Chemie</i> , 2016 , 128, 16278-16282	3.6	11
220	Protonated thiophene-based oligomers as formed within zeolites: understanding their electron delocalization and aromaticity. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 2080-6	3.6	11
219	Magnetophoretic Sorting of Single Catalyst Particles. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10589-10594	16.4	11
218	Nanoscale Chemical Imaging of a Single Catalyst Particle with Tip-Enhanced Fluorescence Microscopy. <i>ChemCatChem</i> , 2019 , 11, 417-423	5.2	11
217	Suzuki-Miyaura Cross-Coupling Using Plasmonic Pd-Decorated Au Nanorods as Catalyst: A Study on the Contribution of Laser Illumination. <i>ChemCatChem</i> , 2019 , 11, 4974-4980	5.2	11

216	Chemical Imaging of the Binder-Dependent Coke Formation in Zeolite-Based Catalyst Bodies During the Transalkylation of Aromatics. <i>ChemCatChem</i> , 2019 , 11, 4788-4796	5.2	11
215	Sustainable production of dimethyl adipate by non-heme iron(III) catalysed oxidative cleavage of catechol. <i>Catalysis Science and Technology</i> , 2015 , 5, 2103-2109	5.5	11
214	On the Surface Chemistry of Iron Oxides in Reactive Gas Atmospheres. <i>Angewandte Chemie</i> , 2011 , 123, 1622-1626	3.6	11
213	Architecture-Dependent Distribution of Mesopores in Steamed Zeolite Crystals as Visualized by FIB-SEM Tomography. <i>Angewandte Chemie</i> , 2011 , 123, 1330-1334	3.6	11
212	CATALYSIS BY SUPPORTED METAL OXIDES 2001 , 613-648		11
211	Toward Catalytic Ketonization of Volatile Fatty Acids Extracted from Fermented Wastewater by Adsorption. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 11292-11298	8.3	11
210	Single Trap States in Single CdSe Nanoplatelets. ACS Nano, 2021, 15, 7216-7225	16.7	11
209	Probing the Location and Speciation of Elements in Zeolites with Correlated Atom Probe Tomography and Scanning Transmission X-Ray Microscopy. <i>ChemCatChem</i> , 2019 , 11, 488-494	5.2	11
208	Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle. <i>Angewandte Chemie</i> , 2018 , 130, 263-267	3.6	11
207	Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO reduction conditions. <i>Nanoscale</i> , 2021 , 13, 4835-4844	7.7	11
206	Elucidating the K-Edge X-Ray Absorption Near-Edge Structure of Cobalt Carbide. <i>ChemCatChem</i> , 2019 , 11, 3042-3045	5.2	10
205	In Situ Spectroscopy of Calcium Fluoride Anchored Metal-Organic Framework Thin Films during Gas Sorption. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19545-19552	16.4	10
204	Multi-Spectroscopic Interrogation of the Spatial Linker Distribution in Defect-Engineered Metal-Organic Framework Crystals: The [Cu (btc) (cydc)] Showcase. <i>Chemistry - A European Journal</i> , 2020 , 26, 3614-3625	4.8	10
203	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick X-ray Absorption Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12430-12434	16.4	10
202	Impact of Niobium in the Metal Drganic Framework-Mediated Synthesis of Co-Based Catalysts for Synthesis Gas Conversion. <i>Catalysis Letters</i> , 2019 , 149, 3279-3286	2.8	10
201	A radical twist to the versatile behavior of iron in selective methane activation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11137-9	16.4	10
200	Polyethylene with Reverse Co-monomer Incorporation: From an Industrial Serendipitous Discovery to Fundamental Understanding. <i>Angewandte Chemie</i> , 2015 , 127, 13265-13271	3.6	10
199	Integrated Laser and Electron Microscopy Correlates Structure of Fluid Catalytic Cracking Particles to Brfisted Acidity. <i>Angewandte Chemie</i> , 2012 , 124, 1457-1460	3.6	10

198	Using DFT in search for support effects during methanol oxidation on supported molybdenum oxides. <i>ChemPhysChem</i> , 2011 , 12, 3281-90	3.2	10
197	Pd-Catalyzed Telomerization of 1,3-Dienes with Multifunctional Renewable Substrates: Versatile Routes for the Valorization of Biomass-Derived Platform Molecules. <i>Topics in Organometallic Chemistry</i> , 2012 , 45-101	0.6	10
196	Ethylene polymerization over chromium complexes grafted onto MCM-41 materials. <i>Chemical Communications</i> , 1999 , 445-446	5.8	10
195	In Zeolithe eingeschlossene Kupfer-Histidin-Komplexe als Mimetica natflicher Kupferenzyme. <i>Angewandte Chemie</i> , 1995 , 107, 2868-2870	3.6	10
194	Nanoweb Surface-Mounted Metal-Organic Framework Films with Tunable Amounts of Acid Sites as Tailored Catalysts. <i>Chemistry - A European Journal</i> , 2020 , 26, 691-698	4.8	10
193	Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6226-6235	5.6	10
192	Matrix Effects in a Fluid Catalytic Cracking Catalyst Particle: Influence on Structure, Acidity, and Accessibility. <i>Chemistry - A European Journal</i> , 2020 , 26, 11995-12009	4.8	9
191	NbOx/SiO2 in the gas-phase Beckmann rearrangement of cyclohexanone oxime to taprolactam: Influence of calcination temperature, niobia loading and silylation post-treatment. <i>Applied Catalysis B: Environmental</i> , 2016 , 185, 272-280	21.8	9
190	Genesis of MgCl -based Ziegler-Natta Catalysts as Probed with Operando Spectroscopy. <i>ChemPhysChem</i> , 2018 , 19, 2662-2671	3.2	9
189	Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. <i>Green Chemistry</i> , 2019 , 21, 5000-5007	10	9
188	Mechanistic Study of the Pd/TOMPP-Catalyzed Telomerization of 1,3-Butadiene: Influence of Aromatic Solvents on Bis-Phosphine Complex Formation and Regioselectivity. <i>Organometallics</i> , 2013 , 32, 5047-5057	3.8	9
187	Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios. <i>Angewandte Chemie</i> , 2017 , 129, 11369-11373	3.6	9
186	CaO as drop-in colloidal catalysts for the synthesis of higher polyglycerols. <i>Chemistry - A European Journal</i> , 2015 , 21, 5101-9	4.8	9
185	An Attempt to Selectively Oxidize Methane over Supported Gold Catalysts. <i>Catalysis Letters</i> , 2011 , 141, 1429-1434	2.8	9
184	Understanding the Promotion Effect of Lanthanum Oxide on Gold-Based Catalysts in the Partial Oxidation of Methanol by in Situ XAFS and DSC Studies. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 155	4 <i>3</i> :855	54
183	Facile Access to Key Reactive Intermediates in the Pd/PR3-Catalyzed Telomerization of 1,3-Butadiene. <i>Angewandte Chemie</i> , 2010 , 122, 8144-8147	3.6	9
182	Design and applications of a home-built in situ FT-Raman spectroscopic cell. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2004 , 60, 2969-75	4.4	9
181	Uncovering the reaction mechanism behind CoO as active phase for CO hydrogenation <i>Nature Communications</i> , 2022 , 13, 324	17.4	9

(2020-2020)

180	Melamine-Based Microporous Organic Framework Thin Films on an Alumina Membrane for High-Flux Organic Solvent Nanofiltration. <i>ChemSusChem</i> , 2020 , 13, 136-140	8.3	9
179	3-D X-ray Nanotomography Reveals Different Carbon Deposition Mechanisms in a Single Catalyst Particle. <i>ChemCatChem</i> , 2021 , 13, 2494-2507	5.2	9
178	Quality control for Ziegler-Natta catalysis via spectroscopic fingerprinting. <i>Journal of Catalysis</i> , 2018 , 363, 128-135	7.3	9
177	Zeolite-Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23713-23721	16.4	9
176	Intra- and Interparticle Heterogeneities in Solid Activators for Single-Site Olefin Polymerization Catalysis as Revealed by Micro-Spectroscopy. <i>Chemistry - A European Journal</i> , 2018 , 24, 11944-11953	4.8	8
175	Structure and Basicity of Microporous Titanosilicate ETS-10 and Vanadium-Containing ETS-10. Journal of Physical Chemistry C, 2012 , 116, 17124-17133	3.8	8
174	Wirt-Gast-Geometrie in Zeolithporen von ZSM-5: rümlich aufgel\(\text{durch}\) CARS-Spektromikroskopie. <i>Angewandte Chemie</i> , 2012 , 124, 1371-1375	3.6	8
173	Pd/TOMPP-catalyzed telomerization of 1,3-butadiene: From biomass-based substrates to new mechanistic insights. <i>Pure and Applied Chemistry</i> , 2012 , 84, 1713-1727	2.1	8
172	Looking inside catalyst extrudates with time-resolved surface-enhanced Raman spectroscopy (TR-SERS). <i>Applied Spectroscopy</i> , 2012 , 66, 1179-85	3.1	8
171	Application of AXAFS spectroscopy to transition-metal oxides: influence of the nearest and next nearest neighbour shells in vanadium oxides. <i>Chemistry - A European Journal</i> , 2007 , 13, 5845-56	4.8	8
170	Elucidating Zeolite Channel Geometry-Reaction Intermediate Relationships for the Methanol-to-Hydrocarbon Process. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20024-20030	16.4	8
169	High-Pressure Operando UV-Vis Micro-Spectroscopy of Coke Formation in Zeolite-based Catalyst Extrudates during the Transalkylation of Aromatics. <i>ChemCatChem</i> , 2020 , 12, 5465-5475	5.2	8
168	Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO2 Reduction on Copper. <i>Angewandte Chemie</i> , 2021 , 133, 1671.	2 ³ 1672	o ⁸
167	Micro-spectroscopy of HKUST-1 metal-organic framework crystals loaded with tetracyanoquinodimethane: effects of water on host-guest chemistry and electrical conductivity. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 25678-25689	3.6	8
166	Stable niobia-supported nickel catalysts for the hydrogenation of carbon monoxide to hydrocarbons. <i>Catalysis Today</i> , 2020 , 343, 56-62	5.3	8
165	Template-Free Nanostructured Fluorine-Doped Tin Oxide Scaffolds for Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 36485-36496	9.5	7
164	Probing the Effect of Chemical Dopant Phase on Photoluminescence of Monolayer MoS2 Using in Situ Raman Microspectroscopy. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15738-15743	3.8	7
163	In Situ Study on Ni-Mo Stability in a Water-Splitting Device: Effect of Catalyst Substrate and Electric Potential. <i>ChemSusChem</i> , 2020 , 13, 3172-3179	8.3	7

162	Diagnosing the Internal Architecture of Zeolite Ferrierite. ChemPhysChem, 2018, 19, 367-372	3.2	7
161	Capturing the Genesis of an Active Fischer Tropsch Synthesis Catalyst with Operando X-ray Nanospectroscopy. <i>Angewandte Chemie</i> , 2018 , 130, 12133-12138	3.6	7
160	Uniformly Oriented Zeolite ZSM-5 Membranes with Tunable Wettability on a Porous Ceramic. <i>Angewandte Chemie</i> , 2018 , 130, 12638-12642	3.6	7
159	Stable platinum in a zeolite channel. <i>Nature Materials</i> , 2019 , 18, 778-779	27	7
158	"Extracting" the key fragment in ETS-10 crystallization and its application in AM-6 assembly. <i>Chemistry - A European Journal</i> , 2012 , 18, 12078-84	4.8	7
157	Chemical Probing within Catalyst Bodies by Diagonal Offset Raman Spectroscopy. <i>Angewandte Chemie</i> , 2012 , 124, 981-984	3.6	7
156	Monitoring the preparation of (Co)Mo/Al2O3 extrudates using spatially resolved spectroscopic techniques. <i>Studies in Surface Science and Catalysis</i> , 2006 , 175-186	1.8	7
155	Bis(EDXO)dicopper as intermediate in the catalytic decomposition of No over Cu-ZSM-5. <i>Studies in Surface Science and Catalysis</i> , 2004 , 154, 2449-2457	1.8	7
154	Low-Temperature Destruction of Chlorinated Hydrocarbons over Lanthanide Oxide Based Catalysts. <i>Angewandte Chemie</i> , 2002 , 114, 4924-4926	3.6	7
153	In situ Spectroscopy of Catalysts. <i>ChemInform</i> , 2005 , 36, no		7
152	Identification of Iron Carbides in Fe(NaB)/HAl2O3 Fischer-Tropsch Synthesis Catalysts with X-ray Powder Diffractometry and MBsbauer Absorption Spectroscopy. <i>ChemCatChem</i> , 2020 , 12, 5121-5139	5.2	7
151	Continuous Flow Pickering Emulsion Catalysis in Droplet Microfluidics Studied with In Situ Raman Microscopy. <i>Chemistry - A European Journal</i> , 2020 , 26, 15099-15102	4.8	7
150	Efficient Synthesis of Monomeric Fe Species in Zeolite ZSM-5 for the Low-Temperature Oxidation of Methane. <i>ChemCatChem</i> , 2021 , 13, 2766-2770	5.2	7
149	Early-stage particle fragmentation behavior of a commercial silica-supported metallocene catalyst. <i>Catalysis Science and Technology</i> ,	5.5	7
148	On the Cobalt Carbide Formation in a Co/TiO Fischer-Tropsch Synthesis Catalyst as Studied by High-Pressure, Long-Term X-ray Absorption and Diffraction. <i>ACS Catalysis</i> , 2021 , 11, 2956-2967	13.1	7
147	The active phase in cobalt-based Fischer-Tropsch synthesis. <i>Chem Catalysis</i> , 2021 , 1, 339-363		7
146	Deactivation of Cu-Exchanged Automotive-Emission NH3-SCR Catalysts Elucidated with Nanoscale Resolution Using Scanning Transmission X-ray Microscopy. <i>Angewandte Chemie</i> , 2020 , 132, 15740-15747	7 ^{3.6}	6

144	Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins. <i>Chemistry - A European Journal</i> , 2018 , 24, 4597-4606	4.8	6
143	Efficient and Highly Transparent Ultra-Thin Nickel-Iron Oxy-hydroxide Catalyst for Oxygen Evolution Prepared by Successive Ionic Layer Adsorption and Reaction. <i>ChemPhotoChem</i> , 2019 , 3, 1050-	1034	6
142	Unraveling the Redox Behavior of a CoMoS Hydrodesulfurization Catalyst: A Scanning Transmission X-ray Microscopy Study in the Tender X-ray Range. <i>Journal of Physical Chemistry C</i> , 2015 , 150127105552	2002	6
141	Breakthroughs in hard X-ray diffraction: towards a multiscale science approach in heterogeneous catalysis. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8556-8	16.4	6
140	Techniques Coupling for Catalyst Characterisation 2012 , 1075-1117		6
139	Conceptual chemistry approach towards the support effect in supported vanadium oxides: Valence bond calculations on the ionicity of vanadium catalysts. <i>Catalysis Today</i> , 2011 , 177, 3-11	5.3	6
138	Tandem catalysis with double-shelled hollow spheres Nature Materials, 2022,	27	6
137	Crystal Phase Effects on the Gas-Phase Ketonization of Small Carboxylic Acids over TiO Catalysts. <i>ChemSusChem</i> , 2021 , 14, 2710-2720	8.3	6
136	Heterogeneity in the Fragmentation of Ziegler Catalyst Particles during Ethylene Polymerization Quantified by X-ray Nanotomography. <i>Jacs Au</i> , 2021 , 1, 852-864		6
135	X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One. <i>Angewandte Chemie</i> , 2016 , 128, 7622-7626	3.6	6
134	Photo-spectroscopy of mixtures of catalyst particles reveals their age and type. <i>Faraday Discussions</i> , 2016 , 188, 69-79	3.6	6
133	Effect of Mesoporosity, Acidity and Crystal Size of Zeolite ZSM-5 on Catalytic Performance during the Ex-situ Catalytic Fast Pyrolysis of Biomass. <i>ChemCatChem</i> , 2021 , 13, 1207-1219	5.2	6
132	Identification of Photoexcited Electron Relaxation in a Cobalt Phosphide Modified Carbon Nitride Photocatalyst. <i>ChemPhotoChem</i> , 2021 , 5, 330-334	3.3	6
131	Electronic and bite angle effects in catalytic CD bond cleavage of a lignin model compound using ruthenium Xantphos complexes. <i>Catalysis Science and Technology</i> , 2017 , 7, 619-626	5.5	5
130	Unraveling the Homologation Reaction Sequence of the Zeolite-Catalyzed Ethanol-to-Hydrocarbons Process. <i>Angewandte Chemie</i> , 2019 , 131, 3948-3952	3.6	5
129	Controlling the Depolymerization of Paraformaldehyde with Pd-Phosphine Complexes. <i>Chemistry - A European Journal</i> , 2020 , 26, 5297-5302	4.8	5
128	Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light. <i>Catalysis Letters</i> , 2018 , 148, 2459-2471	2.8	5
127	Behavior of a Metal Organic Framework Thin-Film at Elevated Temperature and Pressure as Studied with an Autoclave-Inserted Atomic Force Microscope. <i>ChemPhysChem</i> , 2018 , 19, 2397-2404	3.2	5

126	Recent Trends in Operando and In Situ Characterization: Techniques for Rational Design of Catalysts 2013 , 365-411		5
125	Nanoscale Chemical Imaging of Coking Mechanisms in a Zeolite ZSM-5 Crystal by Atom Probe Tomography. <i>Microscopy and Microanalysis</i> , 2017 , 23, 674-675	0.5	5
124	Regioselective Cleavage of Electron-Rich Double Bonds in Dienes to Carbonyl Compounds with [Fe(OTf)2(mix-BPBP)] and a Combination of H2O2 and NaIO4. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 3462-3466	2.3	5
123	Synthesis and morphology control of AM-6 nanofibers with tailored -V-O-V- intermediates. <i>Chemistry - A European Journal</i> , 2013 , 19, 14200-4	4.8	5
122	On the intergrowth structure of zeolite crystals as revealed by wide field and confocal fluorescence microscopy of the template removal processes. <i>Studies in Surface Science and Catalysis</i> , 2008 , 174, 757-7	7 <mark>62</mark> 8	5
121	The Epoxidation of Propene over Gold Nanoparticle Catalysts 2008 , 339-354		5
120	Synthesis of Co-rich CoAPO-5 molecular sieves: a comparison between glycerol and water as solvent. <i>Journal of Nanoscience and Nanotechnology</i> , 2003 , 3, 271-5	1.3	5
119	Reaction Mechanism of Pd-Catalyzed "CO-Free" Carbonylation Reaction Uncovered by In Situ Spectroscopy: The Formyl Mechanism. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3422-3427	16.4	5
118	In Situ X-ray Raman Scattering Spectroscopy of the Formation of Cobalt Carbides in a Co/TiO2 Fischer Tropsch Synthesis Catalyst. ACS Catalysis, 2021, 11, 809-819	13.1	5
117	Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion. <i>Catalysis Today</i> , 2021 , 382, 120-120	5.3	5
116	Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. <i>Nature Communications</i> , 2021 , 12, 7096	17.4	5
115	In Situ Spectroscopy of Calcium Fluoride Anchored Metal©rganic Framework Thin Films during Gas Sorption. <i>Angewandte Chemie</i> , 2020 , 132, 19713-19720	3.6	4
114	Single Particle Assays to Determine Heterogeneities within Fluid Catalytic Cracking Catalysts. <i>Chemistry - A European Journal</i> , 2020 , 26, 8546-8554	4.8	4
113	Basicity and Electrolyte Composition Dependent Stability of Ni-Fe-S and Ni-Mo Electrodes during Water Splitting. <i>ChemPhysChem</i> , 2020 , 21, 518-524	3.2	4
112	Designing new catalysts: synthesis of new active structures: general discussion. <i>Faraday Discussions</i> , 2016 , 188, 131-59	3.6	4
111	Facile Two-Step Synthesis of Delafossite CuFeO2 Photocathodes by Ultrasonic Spray Pyrolysis and Hybrid Microwave Annealing. <i>ChemPhotoChem</i> , 2019 , 3, 1238-1245	3.3	4
110	Multi-Technique In Situ Approach Towards the Study of Catalytic Solids at Work Using Synchrotron Radiation. Synchrotron Radiation News, 2009 , 22, 22-30	0.6	4
109	Chemometric analysis of diffuse reflectance spectra of CoA zeolites: Spectroscopic fingerprinting of Co2+-sites. <i>Studies in Surface Science and Catalysis</i> , 1997 , 623-630	1.8	4

(2019-2007)

108	New Highly Mixed Phases in Ball-Milled Cu/ZnO Catalysts as Established by EXAFS and XANES. <i>AIP Conference Proceedings</i> , 2007 ,	0	4
107	Observing the Influence of X-Rays on Aqueous Copper Solutions by In Situ Combined Video/XAFS/UV-Vis Spectroscopy. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	4
106	The effect of chemical composition and structure on XPS binding energies in zeolites. <i>Studies in Surface Science and Catalysis</i> , 2004 , 1385-1392	1.8	4
105	Coordination Chemistry in Zeolites. <i>Topics in Inclusion Science</i> , 1995 , 185-213		4
104	Nickel Poisoning of a Cracking Catalyst Unravelled by Single-Particle X-ray Fluorescence-Diffraction-Absorption Tomography. <i>Angewandte Chemie</i> , 2020 , 132, 3950-3955	3.6	4
103	Reactivity of Single Transition Metal Atoms on a Hydroxylated Amorphous Silica Surface: A Periodic Conceptual DFT Investigation. <i>Chemistry - A European Journal</i> , 2021 , 27, 6050-6063	4.8	4
102	Unravelling the effect of impurities on the methanol-to-olefins process in waste-derived zeolites ZSM-5. <i>Journal of Catalysis</i> , 2021 , 396, 136-147	7.3	4
101	The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean. <i>Geology</i> , 2021 , 49, 330-334	5	4
100	In situ Nanoscale Infrared Spectroscopy of Water Adsorption on Nanoislands of Surface-Anchored Metal-Organic Frameworks. <i>Angewandte Chemie</i> , 2021 , 133, 1644-1648	3.6	4
99	Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. <i>Materials Advances</i> , 2021 , 2, 2739-2749	3.3	4
98	Synthesis and Characterization of Ru-Loaded Anodized Aluminum Oxide for Hydrogenation Catalysis. <i>ChemistryOpen</i> , 2019 , 8, 532-538	2.3	3
97	Formation and Functioning of Bimetallic Nanocatalysts: The Power of X-ray Probes. <i>Angewandte Chemie</i> , 2019 , 131, 13354-13364	3.6	3
96	Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe O for Photoelectrochemical Hydrogen Evolution in Alkaline Media. <i>ChemSusChem</i> , 2018 , 11, 1374-1381	8.3	3
95	Porous materials: Zeolites shine bright. <i>Nature Materials</i> , 2016 , 15, 933-4	27	3
94	Cu-Zeolite Selective Catalytic Reduction Catalysts for NOx Conversion 2016 , 433-450		3
93	Magnetophoretic Sorting of Single Catalyst Particles. <i>Angewandte Chemie</i> , 2018 , 130, 10749-10754	3.6	3
92	Hexane-1,2,5,6-tetrol as a Versatile and Biobased Building Block for the Synthesis of Sustainable (Chiral) Crystalline Mesoporous Polyboronates. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 13	430 ³ 13	436
91	Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures. <i>Chemistry - A European Journal</i> , 2019 , 25, 15772-15778	4.8	3

90	Operando EXAFS and XANES of Catalytic Solids and Related Materials 2017 , 167-191		3
89	Separation of Time-Resolved Phenomena in Surface-Enhanced Raman Scattering of the Photocatalytic Reduction of p-Nitrothiophenol. <i>ChemPhysChem</i> , 2015 , 16, 489-489	3.2	3
88	On the Microdistributions of Cr-Ion Complexes within mm-Sized EAl2O3 Catalyst Bodies upon Impregnation as Studied by UV/Vis and Raman Microspectroscopy. <i>ChemCatChem</i> , 2012 , 4, 217-227	5.2	3
87	Vibrational Spectroscopy and Related In situ Studies of Catalytic Reactions within Molecular Sieves 2010 , 209-236		3
86	An eye on the inside of zeolite crystals in the act: Studying Bristed acidity with in-situ micro-spectroscopy. <i>Studies in Surface Science and Catalysis</i> , 2008 , 21-32	1.8	3
85	ED-XAS Data Reveal In-situ Time-Resolved Adsorbate Coverage on Supported Molybdenum Oxide Catalysts during Propane Dehydrogenation. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	3
84	Promotion effects in the oxidation of CO over zeolite-supported Pt nanoparticles. <i>Studies in Surface Science and Catalysis</i> , 2005 , 1239-1246	1.8	3
83	Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite. <i>ACS Catalysis</i> , 2022 , 12, 1847-1856	13.1	3
82	Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bulletin,1	3.2	3
81	Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 800-805	8.3	3
80	Photoinduced Force Microscopy as an Efficient Method Towards the Detection of Nanoplastics. <i>Chemistry Methods</i> , 2021 , 1, 205-209		3
79	Operando Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of the NO Reduction Reaction over Rhodium-Based Catalysts. <i>ChemPhysChem</i> , 2021 , 22, 1595-1602	3.2	3
78	Influence of Metal-Alkyls on Early-Stage Ethylene Polymerization over a Cr/SiO Phillips Catalyst: A Bulk Characterization and X-ray Chemical Imaging Study. <i>Chemistry - A European Journal</i> , 2021 , 27, 1688-	-1699	3
77	Upscaling Effects on Alkali Metal-Grafted Ultrastable Y Zeolite Extrudates for Modeled Catalytic Deoxygenation of Bio-oils. <i>ChemCatChem</i> , 2021 , 13, 1951-1965	5.2	3
76	Unravelling Channel Structure-Diffusivity Relationships in Zeolite ZSM-5 at the Single-Molecule Level. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	3
75	Tuning the Redox Chemistry of a Cr/SiO Phillips Catalyst for Controlling Activity, Induction Period and Polymer Properties. <i>ChemPhysChem</i> , 2020 , 21, 1665-1674	3.2	2
74	Catalyst design from theory to practice: general discussion. <i>Faraday Discussions</i> , 2016 , 188, 279-307	3.6	2
73	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick X-ray Absorption Spectroscopy. <i>Angewandte Chemie</i> , 2018 , 130, 12610-12614	3.6	2

72	Catalyst Imaging Using Synchrotron-Based Multitechnique Approaches 2013 , 441-473		2	
71	In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions. Journal of Physics: Conference Series, 2009, 190, 012161	0.3	2	
7º	MetalBupport Interactions 2008, 1178		2	
69	Mn and Fe ions and oxo clusters in ZSM-5: pushing the limits of X-ray spectroscopy. <i>Studies in Surface Science and Catalysis</i> , 2007 , 796-799	1.8	2	
68	Bio-inspired manipulation of catalytic sites via immobilization of metal ion complexes in zeolites. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 1546-1551	1.8	2	
67	Unraveling the Structure of Mn-Promoted Co/TiO2 Fischer-Tropsch Catalysts by In Situ X-Ray Absorption Spectroscopy. <i>AIP Conference Proceedings</i> , 2007 ,	O	2	
66	Synthesis and characterization of zeolite encaged enzyme-mimetic copper histidine complexes. <i>Studies in Surface Science and Catalysis</i> , 2000 , 287-293	1.8	2	
65	Elucidation of the pre-nucleation phase directing metal-organic framework formation. <i>Cell Reports Physical Science</i> , 2021 , 2, 100680	6.1	2	
64	Nature of cobalt species during the in situ sulfurization of Co(Ni)Mo/AlO hydrodesulfurization catalysts. <i>Journal of Synchrotron Radiation</i> , 2019 , 26, 811-818	2.4	2	
63	Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction <i>Catalysis Science and Technology</i> , 2022 , 12, 1220-1228	5.5	2	
62	Correlating the Morphological Evolution of Individual Catalyst Particles to the Kinetic Behavior of Metallocene-Based Ethylene Polymerization Catalysts <i>Jacs Au</i> , 2021 , 1, 1996-2008		2	
61	Femtosecond Charge Density Modulations in Photoexcited CuWO. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 7329-7336	3.8	2	
60	Chemical Imaging of Hierarchical Porosity Formation within a Zeolite Crystal Visualized by Small-Angle X-Ray Scattering and In-Situ Fluorescence Microscopy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13803-13806	16.4	2	
59	Isostearic Acid: A Unique Fatty Acid with Great Potential 2016 , 51-78		2	
58	Preface: Catalysis for Valorization of Biomass and Biomass-derived Platform Molecules (18th NCC). <i>Catalysis Today</i> , 2019 , 319, 1	5.3	2	
57	Reaction Mechanism of Pd-Catalyzed I O-FreelCarbonylation Reaction Uncovered by In Situ Spectroscopy: The Formyl Mechanism. <i>Angewandte Chemie</i> , 2021 , 133, 3464-3469	3.6	2	
56	Visualizing defects and pore connectivity within metal-organic frameworks by X-ray transmission tomography. <i>Chemical Science</i> , 2021 , 12, 8458-8467	9.4	2	
55	5-Hydroxy-2-Methylfurfural from Sugar Beet Thick Juice: Kinetic and Modeling Studies. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2626-2638	8.3	2	

54	Micro-Spectroscopy to Interrogate Solid Catalysts at Work 2018 , 304-320		2
53	Mechanistic Insights into the Lanthanide-Catalyzed Oxychlorination of Methane as Revealed by Spectroscopy. <i>ACS Catalysis</i> , 2021 , 11, 10574-10588	13.1	2
52	Crowded catalyst, better catalyst. <i>National Science Review</i> , 2021 , 8, nwab141	10.8	2
51	Zeolite-Tailored Active Site Proximity for the Efficient Production of Pentanoic Biofuels. Angewandte Chemie,	3.6	2
50	Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. <i>ACS Catalysis</i> , 2021 , 11, 12324-12335	13.1	2
49	Understanding Water Z eolite Interactions: On the Accuracy of Density Functionals. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20261-20274	3.8	2
48	Disk-Shaped Cobalt Nanocrystals as Fischer Tropsch Synthesis Catalysts Under Industrially Relevant Conditions. <i>Topics in Catalysis</i> , 2020 , 63, 1398-1411	2.3	1
47	Frontispiece: Thermally Stable TiO2- and SiO2-Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts. <i>Chemistry - A European Journal</i> , 2018 , 24,	4.8	1
46	Nanoskalige chemische Bildgebung von Zeolithen durch Atomsondentomographie. <i>Angewandte Chemie</i> , 2018 , 130, 10580-10593	3.6	1
45	Triazacyclophane (TAC)-scaffolded histidine and aspartic acid residues as mimics of non-heme metalloenzyme active sites. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 1088-92	3.9	1
44	Catalyst Characterization⊞eterogeneous 2010 ,		1
43	Understanding the crystallisation processes leading to the formation of microporous aluminophosphates. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 748-755	1.8	1
42	In situ X-Ray Absorption of Co/Mn/TiO2 Catalysts for Fischer Tropsch Synthesis <i>ChemInform</i> , 2004 , 35, no		1
41	Dual Fluorescence in Glutathione-Derived Carbon Dots Revisited <i>Journal of Physical Chemistry C</i> , 2022 , 126, 2720-2727	3.8	1
40	Mechanistic Characterization of Zeolite-Catalyzed Aromatic Electrophilic Substitution at Realistic Operating Conditions <i>Jacs Au</i> , 2022 , 2, 502-514		1
39	Tip-enhanced Raman spectroscopy applications: from graphene to heterogeneous catalysis 2018,		1
38	Monitoring Molecular Weight Changes during Technical Lignin Depolymerization by Operando Attenuated Total Reflectance Infrared Spectroscopy and Chemometrics. <i>ChemSusChem</i> , 2021 , 14, 5517	8.3	1
37	Two-in-One Catalyst Turns Carbon Dioxide in Base Chemicals. <i>CheM</i> , 2020 , 6, 3167-3169	16.2	1

36	Mechanistic Insights into the Conversion of Biorenewable Levoglucosanol to Dideoxysugars. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 16339-16349	8.3	1
35	Elucidating Zeolite Channel Geometry R eaction Intermediate Relationships for the Methanol-to-Hydrocarbon Process. <i>Angewandte Chemie</i> , 2020 , 132, 20199-20205	3.6	1
34	Influence of Pore Structure and Metal-Node Geometry on the Polymerization of Ethylene over Cr-Based Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2021 , 27, 5769-5781	4.8	1
33	Plastic Waste Conversion over a Refinery Waste Catalyst. <i>Angewandte Chemie</i> , 2021 , 133, 16237-16244	3.6	1
32	Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions. <i>Faraday Discussions</i> , 2021 , 229, 267-280	3.6	1
31	Monitoring Aqueous Phase Reactions by Operando ATR-IR Spectroscopy at High Temperature and Pressure: A Biomass Conversion Showcase. <i>Chemistry Methods</i> ,		1
30	New insights into the biphasic IO-free Pauson II and cyclisation reaction through combined in situ spectroscopy and multiple linear regression modelling. <i>Catalysis Science and Technology</i> , 2021 , 11, 1626-1636	5.5	1
29	Space and Time-Resolved Spectroscopy of Catalyst Bodies201-216		1
28	An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 1879-1893	11.3	1
27	Classification-based motion analysis of single-molecule trajectories using DiffusionLab. <i>Scientific Reports</i> , 2022 , 12,	4.9	1
26	Correction to Role of Magnesium Silicates in Wet-Kneaded Silica-Magnesia Catalysts for the Lebedev Ethanol-to-Butadiene Process. <i>ACS Catalysis</i> , 2016 , 6, 7685-7685	13.1	О
25	X-ray nanotomography uncovers morphological heterogeneity in a polymerization catalyst at multiple reaction stages. <i>Chem Catalysis</i> , 2021 , 1, 1413-1413		О
24	Deactivation and regeneration of solid acid and base catalyst bodies used in cascade for bio-oil synthesis and upgrading. <i>Journal of Catalysis</i> , 2021 , 405, 641-641	7.3	О
23	Chemical Imaging of Hierarchical Porosity Formation within a Zeolite Crystal Visualized by Small-Angle X-Ray Scattering and In-Situ Fluorescence Microscopy. <i>Angewandte Chemie</i> , 2021 , 133, 139:	2 3 2-139	23
22	Separation and Purification of Hydrocarbons with Porous Materials. <i>Angewandte Chemie</i> , 2021 , 133, 190) 7.& -19	097
21	High-throughput activity screening and sorting of single catalyst particles with a droplet microreactor using dielectrophoresis. <i>Nature Catalysis</i> , 2021 , 4, 1070-1079	36.5	O
20	Favoring the Methane Oxychlorination Reaction over EuOCl by Synergistic Effects with Lanthanum <i>ACS Catalysis</i> , 2022 , 12, 5698-5710	13.1	О
19	InnenrEktitelbild: Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios (Angew. Chem. 37/2017). <i>Angewandte Chemie</i> , 2017 , 129, 11427-11427	3.6	

18	Single Particle Assays to Determine Heterogeneities within Fluid Catalytic Cracking Catalysts. <i>Chemistry - A European Journal</i> , 2020 , 26, 8482	4.8
17	Photoelectrochemistry: Enhanced Photoresponse of FeS2 Films: The Role of Marcasite P yrite Phase Junctions (Adv. Mater. 43/2016). <i>Advanced Materials</i> , 2016 , 28, 9656-9656	24
16	Advances in X-ray Micro-Spectroscopy of Heterogeneous Catalysts. <i>Microscopy and Microanalysis</i> , 2018 , 24, 412-415	0.5
15	An eye on the inside: imaging of catalytic particles under reaction conditions. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2012 , 68, s44-s44	
14	OxideBupport Interactions 2008 , 1188	
13	Surface and Nanomolecular Catalysis. Herausgegeben von Ryan Richards <i>Angewandte Chemie</i> , 2007 , 119, 496-496	3.6
12	Titelbild: Elucidating Zeolite Channel Geometry R eaction Intermediate Relationships for the Methanol-to-Hydrocarbon Process (Angew. Chem. 45/2020). <i>Angewandte Chemie</i> , 2020 , 132, 19893-198	89 3 6
11	Transforming inactive coke molecules into active intermediates in zeolites. <i>Joule</i> , 2021 , 5, 757-759	27.8
10	Innentitelbild: Chemical Imaging of Hierarchical Porosity Formation within a Zeolite Crystal Visualized by Small-Angle X-Ray Scattering and In-Situ Fluorescence Microscopy (Angew. Chem. 25/2021). <i>Angewandte Chemie</i> , 2021 , 133, 13802-13802	3.6
9	Photoinduced Force Microscopy as an Efficient Method Towards the Detection of Nanoplastics. <i>Chemistry Methods</i> , 2021 , 1, 204-204	
8	Crystal Phase Effects on the Gas-Phase Ketonization of Small Carboxylic Acids over TiO Catalysts. <i>ChemSusChem</i> , 2021 , 14, 2634	8.3
7	Nanoscale Chemical Imaging in Zeolite Catalysts by Atom Probe Tomography. <i>Microscopy and Microanalysis</i> , 2021 , 27, 984-985	0.5
6	The Seventeenth International Symposium on Relations Between Homogeneous and Heterogeneous Catalysis Utrecht July 12🛭 5 2015. <i>Topics in Catalysis</i> , 2016 , 59, 1669-1670	2.3
5	Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures. <i>Chemistry - A European Journal</i> , 2019 , 25, 15706	4.8
4	Rtktitelbild: Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle (Angew. Chem. 1/2018). <i>Angewandte Chemie</i> , 2018 , 130, 366-366	3.6
3	Using Biomass Gasification Mineral Residue as Catalyst to Produce Light Olefins from CO, CO, and H Mixtures <i>ChemSusChem</i> , 2022 , e202200436	8.3
2	Hole Dynamics in Photoexcited Hematite Studied with Femtosecond Oxygen K-edge X-ray Absorption Spectroscopy <i>Journal of Physical Chemistry Letters</i> , 2022 , 4207-4214	6.4
1	Using Biomass Gasification Mineral Residue as Catalyst to Produce Light Olefins from CO, CO, and H Mixtures <i>ChemSusChem</i> , 2022 , e202200851	8.3