Kristin E Schaefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11733774/publications.pdf

Version: 2024-02-01

26 papers 2,096 citations

8 h-index 752698 20 g-index

29 all docs 29 docs citations

times ranked

29

1426 citing authors

#	Article	IF	CITATIONS
1	A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Human Factors, 2011, 53, 517-527.	3.5	1,178
2	A Meta-Analysis of Factors Influencing the Development of Trust in Automation. Human Factors, 2016, 58, 377-400.	3.5	439
3	Measuring Trust in Human Robot Interactions: Development of the "Trust Perception Scale-HRI― , 2016, , 191-218.		90
4	Communicating intent to develop shared situation awareness and engender trust in human-agent teams. Cognitive Systems Research, 2017, 46, 26-39.	2.7	80
5	Human-robot interaction. , 2012, , .		64
6	Classification of Robot Form: Factors Predicting Perceived Trustworthiness. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1548-1552.	0.3	47
7	It takes two to Tango: Automated vehicles and human beings do the dance of driving – Four social considerations for policy. Transportation Research, Part A: Policy and Practice, 2019, 122, 173-183.	4.2	27
8	Will passengers trust driverless vehicles? Removing the steering wheel and pedals. , 2016, , .		25
9	Individual Differences, Trust, and Vehicle Autonomy. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 786-790.	0.3	21
10	Relinquishing Manual Control: Collaboration Requires the Capability to Understand Robot Intent. , 2016, , .		11
11	The Future of Robotic Design. Ergonomics in Design, 2015, 23, 13-19.	0.7	10
12	Trust in Human-Autonomy Teaming: A Review of Trust Research from the US Army Research Laboratory Robotics Collaborative Technology Alliance. Advances in Intelligent Systems and Computing, 2019, , 102-114.	0.6	9
13	Bidirectional Communication for Effective Human-Agent Teaming. Lecture Notes in Computer Science, 2018, , 338-350.	1.3	9
14	Where Do You Think You're Going?. ACM Transactions on Human-Robot Interaction, 2020, 9, 1-55.	4.1	8
15	Trust Measurement in Human-Autonomy Teams: Development of a Conceptual Toolkit. ACM Transactions on Human-Robot Interaction, 2022, 11, 1-58.	4.1	8
16	Robots vs. machines: Identifying user perceptions and classifications. , 2012, , .		7
17	Approaches for assessing communication in human-autonomy teams. Human-Intelligent Systems Integration, 2021, 3, 99-128.	2.5	7
18	A roadmap for developing team trust metrics for human-autonomy teams. , 2021, , 261-300.		6

#	Article	IF	CITATIONS
19	Manned-Unmanned Teaming: US Army Robotic Wingman Vehicles. Advances in Intelligent Systems and Computing, 2019, , 89-100.	0.6	6
20	Augmented Emotion and its Remote Embodiment: The Importance of Design from Fiction to Reality. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1817-1821.	0.3	4
21	CERBERUS: The development of an intelligent autonomous face recognizing robot. , 2013, , .		4
22	Cohesion in human–autonomy teams: an approach for future research. Theoretical Issues in Ergonomics Science, 2022, 23, 687-724.	1.8	3
23	Leveraging wearable technologies to improve test & evaluation of human-agent teams. Theoretical Issues in Ergonomics Science, 2020, 21, 397-417.	1.8	1
24	Assessment of Manned-Unmanned Team Performance: Comprehensive After-Action Review Technology Development. Advances in Intelligent Systems and Computing, 2020, , 119-130.	0.6	1
25	Developing a new human-autonomy team cohesion Scale. Proceedings of the Human Factors and Ergonomics Society, 2021, 65, 801-806.	0.3	1
26	Human-Autonomy Teaming for the Tactical Edge: The Importance of Humans in Artificial Intelligence Research and Development., 2021,, 115-148.		0