
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11732410/publications.pdf Version: 2024-02-01

Μιμνοι Ιονριάτ

#	Article	IF	CITATIONS
1	Modelling Electrocatalytic Reactions on Rotating Disk Electrodes. Russian Journal of Electrochemistry, 2022, 58, 202-209.	0.3	1
2	Product Inhibited Enzymatic Reactions on the Rotating Disk Electrodes. Electroanalysis, 2021, 33, 2372.	1.5	0
3	Three-phase electrodes: simple and efficient tool for analysis of ion transfer processes across liquid-liquid interface—twenty years on. Journal of Solid State Electrochemistry, 2020, 24, 2575-2583.	1.2	8
4	Staircase cyclic voltammetry of electrocatalytic reaction inhibited by the product. Journal of Solid State Electrochemistry, 2020, 24, 2717-2721.	1.2	1
5	MODELLING REVERSIBLE INHIBITION OF IRREVERSIBLE ELECTRO-OXIDATION. Journal of the Chilean Chemical Society, 2020, 65, 4661-4663.	0.5	1
6	Square-wave protein-film voltammetry: new insights in the enzymatic electrode processes coupled with chemical reactions. Journal of Solid State Electrochemistry, 2019, 23, 2493-2506.	1.2	23
7	Manifestation of reactivation of the electrode surface in staircase cyclic voltammetry. Electrochemistry Communications, 2018, 86, 48-52.	2.3	3
8	Inhibition of mediated electron transfer. Journal of Electroanalytical Chemistry, 2018, 826, 170-173.	1.9	1
9	Simulation of electrocatalytic mechanism followed by chemical reaction. Journal of Electroanalytical Chemistry, 2016, 768, 129-133.	1.9	3
10	Comparison of Cyclic and Square Wave Voltammetry of Irreversible EC Mechanisms. ChemElectroChem, 2015, 2, 2027-2031.	1.7	9
11	Influence of product adsorption on catalytic reaction determined by Michaelis–Menten kinetics. Journal of Electroanalytical Chemistry, 2015, 748, 47-51.	1.9	3
12	Theory of Anodic Stripping Square Wave Voltammetry on Spherical Mercury Electrodes. Croatica Chemica Acta, 2014, 87, 287-290.	0.1	3
13	Theory of Kinetically Controlled Electrode Reaction Coupled to Ion Transfer across the Liquid/Liquid Interface. ChemElectroChem, 2014, 1, 436-440.	1.7	6
14	Theory of square wave voltammetry of three step electrode reaction. Journal of Electroanalytical Chemistry, 2014, 735, 90-94.	1.9	4
15	Theory of square wave voltammetry of amalgam forming ions at spherical electrodes. Electrochimica Acta, 2014, 130, 286-289.	2.6	10
16	Theory of square-wave voltammetry of electrode reaction followed by the dimerization of product. Electrochimica Acta, 2013, 90, 226-231.	2.6	21
17	Squareâ€Wave Voltammetry: A Review on the Recent Progress. Electroanalysis, 2013, 25, 2411-2422.	1.5	184
18	Theory of Square-wave Voltammetry of Kinetically Controlled Two-step Electrode Reactions. Croatica Chemica Acta, 2012, 85, 569-575.	0.1	9

#	Article	IF	CITATIONS
19	Theory of Square-Wave Voltammetry of Two-Electron Reduction with the Adsorption of Intermediate. International Journal of Electrochemistry, 2012, 2012, 1-7.	2.4	10
20	Theory of square-wave voltammetry of two electron reduction with the intermediate that is stabilized by complexation. Electrochimica Acta, 2012, 69, 60-64.	2.6	14
21	Components of the Net Current in Differential Pulse Polarography. Part 2. Kinetics and Adsorption. Electroanalysis, 2011, 23, 642-650.	1.5	1
22	Simulation of square-wave voltammograms of three-electron redox reaction. Electrochimica Acta, 2011, 56, 7189-7193.	2.6	10
23	Theory of square-wave voltammetry of two-step electrode reaction with kinetically stabilized intermediate. Journal of Electroanalytical Chemistry, 2011, 660, 22-25.	1.9	15
24	Theory of Square-Wave Voltammetry of Two-Step Electrode Reaction Using an Inverse Scan Direction. International Journal of Electrochemistry, 2011, 2011, 1-6.	2.4	6
25	Square-wave voltammetry of dissolved redox couple. Russian Journal of Electrochemistry, 2010, 46, 1373-1377.	0.3	5
26	Theory of reverse scan square-wave voltammetry influenced by the kinetics of reactant adsorption. Open Chemistry, 2010, 8, 513-518.	1.0	2
27	Theory of square-wave voltammetry of quasireversible electrode reactions using an inverse scan direction. Electrochimica Acta, 2010, 55, 948-951.	2.6	20
28	A formal scan rate in staircase and square-wave voltammetry. Journal of Electroanalytical Chemistry, 2010, 645, 103-108.	1.9	14
29	Stripping Voltammetry. , 2010, , 201-221.		4
30	Square-Wave Voltammetry. , 2010, , 121-145.		11
31	Cathodic Stripping Voltammetry of Uracil. Experimental and Theoretical Study Under Conditions of Squareâ€Wave Voltammetry. Electroanalysis, 2009, 21, 87-95.	1.5	15
32	lsopotential points in reverse square-wave voltammetry. Journal of Electroanalytical Chemistry, 2009, 637, 28-32.	1.9	14
33	Isopotential points in square-wave voltammetry of reversible electrode reactions. Collection of Czechoslovak Chemical Communications, 2009, 74, 1489-1501.	1.0	3
34	Modeling of Catalytic Reaction in Protein-Film Linear Scan Voltammetry at Rotating Disk Electrode. Portugaliae Electrochimica Acta, 2009, 27, 505-515.	0.4	4
35	Non-Cottrell current–time relationship, caused by reactant adsorption in differential pulse polarography. Journal of Electroanalytical Chemistry, 2008, 624, 174-178.	1.9	3
36	Protein-film voltammetry: A theoretical study of the temperature effect using square-wave voltammetry. Biophysical Chemistry, 2008, 137, 49-55.	1.5	25

#	Article	IF	CITATIONS
37	A theory of square-wave voltammetry of surface-active, electroinactive compounds. Electrochimica Acta, 2008, 53, 8045-8050.	2.6	13
38	A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms. Biophysical Chemistry, 2008, 138, 130-137.	1.5	26
39	Square-Wave Voltammetry. Monographs in Electrochemistry, 2007, , .	0.2	198
40	Studying ion transfers across a room temperature ionic liquidâ^£aqueous electrolyte interface driven by redox reactions of lutetium bis(tetra-tert-butylphthalocyaninato). Journal of Electroanalytical Chemistry, 2007, 611, 192-200.	1.9	23
41	A Comparative Study of the Anion Transfer Kinetics Across a Water/Nitrobenzene Interface by Means of Electrochemical Impedance Spectroscopy and Square-Wave Voltammetry at Thin Organic Film-Modified Electrodes. Langmuir, 2006, 22, 3404-3412.	1.6	36
42	Theoretical study of a surface electrode reaction preceded by a homogeneous chemical reaction under conditions of square-wave voltammetry. Electrochemistry Communications, 2005, 7, 515-522.	2.3	35
43	Kinetics of electrode reaction coupled to ion transfer across the liquid/liquid interface. Open Chemistry, 2005, 3, 216-229.	1.0	6
44	Square-Wave Voltammetry. , 2005, , 111-136.		1
45	Stripping Voltammetry. , 2005, , 191-210.		1
46	Square-Wave Voltammetry of Cathodic Stripping Reactions. Diagnostic Criteria, Redox Kinetic Measurements, and Analytical Applications. Electroanalysis, 2004, 16, 832-842.	1.5	18
47	EC mechanism of an adsorbed redox couple. Volume vs surface chemical reaction. Journal of Electroanalytical Chemistry, 2004, 565, 191-202.	1.9	24
48	Modeling cyclic voltammograms of simultaneous electron and ion transfer reactions at a conic film three-phase electrode. Journal of Electroanalytical Chemistry, 2003, 540, 89-96.	1.9	24
49	The influence of electrolyte concentration on the parameters of the Frumkin isotherm in the Cd2+–lâ^' system. Journal of Electroanalytical Chemistry, 2003, 541, 67-76.	1.9	12
50	Distribution of three ions in the thin film experiment. Electrochemistry Communications, 2003, 5, 637-643.	2.3	9
51	Theory of Square-Wave Voltammetry of a Reversible Redox Reaction Complicated by the Reactant Adsorption. Electroanalysis, 2002, 14, 405-414.	1.5	10
52	Square-wave voltammetry of quasi-reversible electrode processes with coupled homogeneous chemical reactions. Journal of Electroanalytical Chemistry, 2002, 518, 91-102.	1.9	51
53	Quasi-reversible EC reactions at spherical microelectrodes analysed by square-wave voltammetry. Journal of Electroanalytical Chemistry, 2002, 527, 85-92.	1.9	25
54	Preceding chemical reactions in dc polarography:. Journal of Electroanalytical Chemistry, 2002, 531, 147-154.	1.9	9

#	Article	IF	CITATIONS
55	Square-Wave Voltammetry of Decamethylferrocene at the Three-Phase Junction Organic Liquid/Aqueous Solution/Graphite. Collection of Czechoslovak Chemical Communications, 2001, 66, 434-444.	1.0	36
56	Ohmic drop effects in square-wave voltammetry. Journal of Electroanalytical Chemistry, 2001, 497, 114-124.	1.9	38
57	On the electrochemically driven formation of bilayered systems of solid Prussian-blue-type metal hexacyanoferrates: a model for Prussian blueâ^£cadmium hexacyanoferrate supported by finite difference simulations. Journal of Electroanalytical Chemistry, 2001, 501, 193-204.	1.9	34
58	Cyclic voltammetry of decamethylferrocene at the organic liquidâ^£aqueous solutionâ^£graphite three-phase junction. Journal of Electroanalytical Chemistry, 2001, 508, 129-137.	1.9	82
59	Theoretical and experimental study of the surface redox reaction involving interactions between the adsorbed particles under conditions of square-wave voltammetry. Journal of Electroanalytical Chemistry, 2001, 515, 91-100.	1.9	32
60	Theoretical Analysis of Pulse and Differential Pulse Polarography of Reversible Redox Reaction Complicated by Reactant Adsorption. Collection of Czechoslovak Chemical Communications, 2001, 66, 423-433.	1.0	5
61	A minimum separating diffusion and adsorption waves in polarography using a static mercury drop electrode. Journal of Electroanalytical Chemistry, 1999, 465, 30-36.	1.9	11
62	Diffusion from a three-phase junction into a hemispherical droplet. Electrochemistry Communications, 1999, 1, 207-212.	2.3	14
63	Square-wave voltammetry of a cathodic stripping reaction complicated by adsorption of the reacting ligand. Analytica Chimica Acta, 1999, 386, 47-62.	2.6	23
64	Quasireversible Maximum in Cathodic Stripping Square-Wave Voltammetry. Electroanalysis, 1999, 11, 984-989.	1.5	40
65	A model for the coupled transport of ions and electrons in redox conductive microcrystals. Journal of Solid State Electrochemistry, 1999, 3, 172-175.	1.2	102
66	Redox Kinetics Measurements of Probucole Using Square-Wave Voltammetry. Electroanalysis, 1999, 11, 660-663.	1.5	12
67	Differential Pulse Voltammetry on Spherical Microelectrodes. Electroanalysis, 1999, 11, 1089-1093.	1.5	9
68	A Cathodic Stripping Square-Wave Voltammetry of a Second-Order Redox Reaction and Its Application to the Mercury-Cysteine System. Electroanalysis, 1998, 10, 976-984.	1.5	26
69	A Simulation of an Initial Stage of a Pseudopolarographic Experiment on a Thin Mercury Film Covered Rotating Disk Electrode. Electroanalysis, 1998, 10, 1022-1025.	1.5	8
70	Sulfide ion electrooxidation catalysed by cobalt phthalocyanine microcrystals. Mikrochimica Acta, 1997, 127, 95-99.	2.5	16
71	Staircase voltammetry with finite diffusion space. Electroanalysis, 1997, 9, 575-577.	1.5	8
72	What makes the anodic stripping voltammetry of mercury at a trace level possible?. Electroanalysis, 1997, 9, 1189-1196.	1.5	14

Μιιίνοι Lovriä‡

#	Article	IF	CITATIONS
73	Split square-wave voltammograms of surface redox reactions. Electroanalysis, 1997, 9, 1283-1287.	1.5	93
74	A peak current - scan rate relationship in staircase voltammetry of a surface redox reaction. Electroanalysis, 1996, 8, 959-962.	1.5	20
75	The standard potentials of the electrode "dissolved atomic mercury/dissolved mercury ions― Electroanalysis, 1996, 8, 1075-1076.	1.5	9
76	Kinetic measurements of a surface confined redox reaction. Analytica Chimica Acta, 1995, 305, 248-255.	2.6	96
77	Measurements of redox kinetics of adsorbed azobenzene by "a quasireversible maximum―in square-wave voltammetry. Electrochimica Acta, 1995, 40, 1781-1784.	2.6	48
78	Detection of surface activity by voltammetric measurements. Electroanalysis, 1995, 7, 652-655.	1.5	9
79	Redox kinetics in cathodic stripping square-wave voltammetry. Electroanalysis, 1995, 7, 1121-1125.	1.5	22
80	Square-wave voltammetry of quasi-reversible surface redox reactions. Journal of Electroanalytical Chemistry, 1995, 384, 115-122.	1.9	108
81	Adsorption of PbBr2 Complex on Mercury Electrodes. Langmuir, 1995, 11, 1784-1790.	1.6	13
82	Pulse polarography of azobenzene. Electroanalysis, 1994, 6, 651-656.	1.5	6
83	Effect of Ionic Strength on Bi(III) Reduction from Perchlorate Medium. Journal of the Electrochemical Society, 1993, 140, 1850-1853.	1.3	27
84	Reactant adsorption in analytical pulse voltammetry: Methodology and recommendations (Technical) Tj ETQq0 (0 0 /gBT /0	Overlock 10 Tf
85	Peak current—frequency relationship in adsorptive stripping square-wave voltammetry. Journal of Electroanalytical Chemistry, 1992, 335, 297-308.	1.9	22
86	A square-wave voltammetry in a cathodic stripping mode. Electroanalysis, 1992, 4, 327-337.	1.5	32
87	Logarithmic analysis of polarographic waves complicated by nonparallel initial and limiting currents. Electroanalysis, 1992, 4, 963-968.	1.5	1
88	Anion induced adsorption in pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 315-328.	0.3	18
89	Faradaic alternating current response of the adsorbed redox couple. Mikrochimica Acta, 1990, 100, 321-325.	2.5	3
90	Bromide induced adsorption of lead ions on mercury electrodes. Electrochimica Acta, 1990, 35,	2.6	23

Bromide indu 1701-1706.

Μιιίνοι Lovriä‡

#	Article	IF	CITATIONS
91	Comparison of stripping methods at thin-film mercury electrodes. Analyst, The, 1990, 115, 45.	1.7	19
92	Theory of metal ions accumulation by the synergistic adsorption at mercury electrodes. Collection of Czechoslovak Chemical Communications, 1990, 55, 903-923.	1.0	12
93	Theory of square-wave stripping voltammetry with adsorptive accumulation. Fresenius Zeitschrift Für Analytische Chemie, 1989, 335, 289-294.	0.7	62
94	Berberine adsorption at a mercury electrode. Mikrochimica Acta, 1989, 97, 159-169.	2.5	7
95	Influence of anion-induced adsorption on D.C. polarography of metal ions. Analytica Chimica Acta, 1989, 218, 7-23.	2.6	24
96	Chloride induced adsorption of Bi(III) at a mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 266, 185-189.	0.3	16
97	Square-wave voltammetry of an adsorbed reactant. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 248, 239-253.	0.3	235
98	Coadsorption of Bi(III) and Clâ^' at a mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241, 329-341.	0.3	19
99	Adsorption effects in square-wave voltammetry of totally irreversible redox reactions. Electrochimica Acta, 1988, 33, 739-744.	2.6	118
100	Reactant adsorption in pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 223, 271-276.	0.3	10
101	Square-wave voltammetric peak current enhancements by adsorption and reversibility of the redox reaction. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 226, 239-251.	0.3	71
102	Irreversibility and reactant adsorption in differential pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 218, 77-91.	0.3	16
103	Square-wave polarography of bismuth. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 214, 103-114.	0.3	9
104	Reactant adsorption in pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 197, 49-61.	0.3	15
105	Drop life-time dependence of current density in differential pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 183, 107-122.	0.3	8
106	Reactant adsorption in pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 190, 1-20.	0.3	36
107	Reactant adsorption in pulse polargraphy. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 181, 35-49.	0.3	27
108	Reactant adsorption in pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 170, 143-173.	0.3	49

#	Article	IF	CITATIONS
109	Electron transfer kinetics of an adsorbed redox couple by double potential-step chronocoulometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 177, 253-268.	0.3	29
110	Capacitive currents in pulse polarography for the case of the reversible E↓E mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 175, 33-52.	0.3	10
111	The theory of the EE mechanism with adsorption of the intermediate. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 153, 1-27.	0.3	23
112	The simulation of the homogeneous catalytic reaction at a monolayer-film covered rotating disc electrode. Electrochimica Acta, 1983, 28, 1261-1267.	2.6	8
113	Theory of differential normal pulse voltammetry. Electrochimica Acta, 1982, 27, 963-968.	2.6	46
114	Reversible reduction of a simple amalgam-forming ion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 110, 347-349.	0.3	1
115	Simple EEE mechanism at DME. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 112, 169-174.	0.3	12