

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173178/publications.pdf Version: 2024-02-01

MINCL

#	Article	IF	CITATIONS
1	Rotation of Biological Cells: Fundamentals and Applications. Engineering, 2022, 10, 110-126.	3.2	22
2	Modelling and Simulation of Flow and Heat Transfer of Ferrofluid under Magnetic Field of Neodymium Block Magnet. Applied Mathematical Modelling, 2022, 103, 238-260.	2.2	10
3	Dual-frequency impedance assays for intracellular components in microalgal cells. Lab on A Chip, 2022, 22, 550-559.	3.1	13
4	Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. Microsystems and Nanoengineering, 2022, 8, 7.	3.4	18
5	Impedance-based tracking of the loss of intracellular components in microalgae cells. Sensors and Actuators B: Chemical, 2022, 358, 131514.	4.0	10
6	Recent advances in microfluidic devices for single-cell cultivation: methods and applications. Lab on A Chip, 2022, 22, 1438-1468.	3.1	20
7	Understanding the effects of aerodynamic and hydrodynamic shear forces on <i>Pseudomonas aeruginosa</i> biofilm growth. Biotechnology and Bioengineering, 2022, 119, 1483-1497.	1.7	9
8	Shape-based separation of drug-treated <i>Escherichia coli</i> using viscoelastic microfluidics. Lab on A Chip, 2022, 22, 2801-2809.	3.1	15
9	Assessment of the electrical penetration of cell membranes using four-frequency impedance cytometry. Microsystems and Nanoengineering, 2022, 8, .	3.4	7
10	Microdroplet enabled cultivation of single yeast cells correlates with bulk growth and reveals subpopulation phenomena. Biotechnology and Bioengineering, 2021, 118, 647-658.	1.7	16
11	Separation and Enrichment of Yeast <i>Saccharomyces cerevisiae</i> by Shape Using Viscoelastic Microfluidics. Analytical Chemistry, 2021, 93, 1586-1595.	3.2	35
12	Real-time quantitative monitoring of <i>in vitro</i> nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opinion on Drug Delivery, 2021, 18, 803-818.	2.4	15
13	Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers. Scientific Reports, 2021, 11, 1652.	1.6	8
14	Glass based micro total analysis systems: Materials, fabrication methods, and applications. Sensors and Actuators B: Chemical, 2021, 339, 129859.	4.0	49
15	Recent advances in magnetic digital microfluidic platforms. Electrophoresis, 2021, 42, 2329-2346.	1.3	14
16	Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation. Analytical Chemistry, 2021, 93, 10955-10965.	3.2	18
17	Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays. Biosensors, 2021, 11, 263.	2.3	6
18	Microscopic impedance cytometry for quantifying single cell shape. Biosensors and Bioelectronics, 2021, 193, 113521.	5.3	27

Ming Li

#	Article	IF	CITATIONS
19	Droplet flow cytometry for single-cell analysis. RSC Advances, 2021, 11, 20944-20960.	1.7	40
20	Focusing of sub-micrometer particles in microfluidic devices. Lab on A Chip, 2020, 20, 35-53.	3.1	77
21	Effects of Flowâ€Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 909-920.	1.1	20
22	Mechanical properties of single cells: Measurement methods and applications. Biotechnology Advances, 2020, 45, 107648.	6.0	47
23	Modular off-chip emulsion generator enabled by a revolving needle. Lab on A Chip, 2020, 20, 4592-4599.	3.1	11
24	Improving Single-Cell Encapsulation Efficiency and Reliability through Neutral Buoyancy of Suspension. Micromachines, 2020, 11, 94.	1.4	24
25	Single-Cell Cultivation Utilizing Microfluidic Systems. , 2020, , 1-24.		0
26	On-chip integration of ultra-thin glass cantilever for physical property measurement activated by femtosecond laser impulse. , 2020, , .		1
27	Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Lab on A Chip, 2019, 19, 2811-2821.	3.1	42
28	Automatic Morphology Control of Liquid Metal using a Combined Electrochemical and Feedback Control Approach. Micromachines, 2019, 10, 209.	1.4	10
29	Dean-flow-coupled elasto-inertial particle and cell focusing in symmetric serpentine microchannels. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	33
30	High-Throughput, Off-Chip Microdroplet Generator Enabled by a Spinning Conical Frustum. Analytical Chemistry, 2019, 91, 3725-3732.	3.2	27
31	Optofluidic time-stretch quantitative phase microscopy. Methods, 2018, 136, 116-125.	1.9	35
32	A Gelatin Microdroplet Platform for Highâ€Throughput Sorting of Hyperproducing Singleâ€Cellâ€Derived Microalgal Clones. Small, 2018, 14, e1803315.	5.2	52
33	High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nature Protocols, 2018, 13, 1603-1631.	5.5	112
34	Size-based sorting of hydrogel droplets using inertial microfluidics. Lab on A Chip, 2018, 18, 2575-2582.	3.1	60
35	Single-Cell Analysis of Morphological and Metabolic Heterogeneity in <i>Euglena gracilis</i> by Fluorescence-Imaging Flow Cytometry. Analytical Chemistry, 2018, 90, 11280-11289.	3.2	18
36	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	13.5	395

Ming Li

#	Article	IF	CITATIONS
37	Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Scientific Reports, 2017, 7, 10802.	1.6	70
38	Photothermal generation of microbubbles on plasmonic nanostructures inside microfluidic channels. Proceedings of SPIE, 2016, , .	0.8	0
39	Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel. Lab on A Chip, 2016, 16, 4458-4465.	3.1	43
40	Raman and surface-enhanced Raman spectroscopy for renal condition monitoring. Proceedings of SPIE, 2016, , .	0.8	0
41	Labelâ€free, zeptomole cancer biomarker detection by surfaceâ€enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. Journal of Biophotonics, 2015, 8, 855-863.	1.1	44
42	Stamping SERS for creatinine sensing. Proceedings of SPIE, 2015, , .	0.8	0
43	Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomedical Optics Express, 2015, 6, 849.	1.5	81
44	Monolithically integrated microfluidic nanoporous gold disk (NPGD) surface-enhanced Raman scattering (SERS) sensor for rapid and label-free biomolecular detection. , 2015, , .		0
45	Label-free, multiplexed, molecular sensing and imaging by stamping SERS. , 2015, , .		0
46	Plasmon-enhanced optical sensors: a review. Analyst, The, 2015, 140, 386-406.	1.7	784
47	Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications. Journal of Materials Chemistry C, 2015, 3, 247-252.	2.7	55
48	Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. Journal of Biomedical Optics, 2014, 19, 111611.	1.4	77
49	Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging. Journal of Biomedical Optics, 2014, 19, 050501.	1.4	48
50	Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluidics and Nanofluidics, 2014, 17, 305-316.	1.0	114
51	A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. Journal Physics D: Applied Physics, 2014, 47, 063001.	1.3	174
52	Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles. Nanoscale, 2014, 6, 12470-12475.	2.8	62
53	On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Scientific Reports, 2014, 4, 5060.	1.6	46
54	Continuous manipulation and separation of particles using combined obstacle―and curvatureâ€induced direct current dielectrophoresis. Electrophoresis, 2013, 34, 952-960.	1.3	40

Ming Li

#	Article	IF	CITATIONS
55	Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. Journal of Micromechanics and Microengineering, 2013, 23, 085023.	1.5	57
56	High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip. Biomicrofluidics, 2013, 7, 024106.	1.2	34
57	Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping. Microfluidics and Nanofluidics, 2013, 14, 527-539.	1.0	41
58	A novel method to construct 3D electrodes at the sidewall of microfluidic channel. Microfluidics and Nanofluidics, 2013, 14, 499-508.	1.0	47
59	Investigation of trapping process in "Centrifuge-on-a-chip― , 2013, , .		1
60	Fabrication of arc-shaped 3D electrodes for biomedical devices. , 2013, , .		0
61	Dielectrophoretic manipulation and separation of particles in an S-shaped microchannel with hurdles. , 2013, , .		0
62	Continuous particle manipulation and separation in a hurdle-combined curved microchannel using DC dielectrophoresis. AIP Conference Proceedings, 2013, , .	0.3	3
63	Continuous Sorting of Microparticles Using Dielectrophoresis. Journal of Nanoscience and Nanotechnology, 2012, 12, 3035-3039.	0.9	9
64	Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis. Journal of Micromechanics and Microengineering, 2012, 22, 095001.	1.5	39
65	A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer. Microfluidics and Nanofluidics, 2012, 12, 751-760.	1.0	47
66	Intelligent Cell Search Engine. SSRN Electronic Journal, 0, , .	0.4	1