\tilde{A} -mer \tilde{A} ϕ makl \ddot{A} \pm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11730020/publications.pdf

Version: 2024-02-01

	933447		1125743	
13	458	10	13	
papers	citations	h-index	g-index	
13	13	13	375	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications. Energy, 2011, 36, 3224-3232.	8.8	131
2	Evaluation of energy and exergy losses in district heating network. Applied Thermal Engineering, 2004, 24, 1009-1017.	6.0	84
3	Experimental and numerical investigation of the cylindrical blade tube inserts effect on the heat transfer enhancement in the horizontal pipe exchangers. Heat and Mass Transfer, 2017, 53, 2769-2784.	2.1	43
4	An experimental exergetic comparison of four different heat pump systems working at same conditions: As air to air, air to water, water to water and water to air. Energy, 2013, 58, 210-219.	8.8	37
5	A thermodynamic model of a solar assisted heat pump system with energy storage. Solar Energy, 1996, 56, 485-492.	6.1	26
6	Optimal Charge Amount for Different Refrigerants in Air-to-Water Heat Pumps. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2016, 40, 325-335.	1.3	26
7	A thermodynamic comparison between heat pump and refrigeration device using several refrigerants. Energy and Buildings, 2018, 168, 272-283.	6.7	26
8	Characterization of lubricating oil effects on the performance of reciprocating compressors in airâ€"water heat pumps. International Journal of Refrigeration, 2017, 74, 505-516.	3.4	25
9	Thermodynamic analysis of a system converted from heat pump to refrigeration device. Heat and Mass Transfer, 2019, 55, 281-291.	2.1	23
10	Influence of Refrigerant Properties and Charge Amount on Performance of Reciprocating Compressor in Air Source Heat Pump. Journal of Energy Engineering - ASCE, 2017, 143, .	1.9	18
11	Photovoltaic thermal (PV/T) system assisted heat pump utilization for milk pasteurization. Solar Energy, 2021, 218, 35-47.	6.1	10
12	Heat pump utilization in milk pasteurization. Energy Conversion and Management, 1994, 35, 91-96.	9.2	6
13	Experimental investigation of the effect of wave turbulators on heat transfer in pipes. Thermal Science, 2022, 26, 1771-1783.	1.1	3