Prangya Ranjan Rout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11728679/publications.pdf

Version: 2024-02-01

28 papers 1,041 citations

16 h-index 23 g-index

29 all docs

29 docs citations

times ranked

29

816 citing authors

#	Article	IF	CITATIONS
1	Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 2017, 244, 484-495.	4.8	204
2	A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. Journal of Environmental Management, 2020, 270, 110909.	3.8	101
3	Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. Journal of Environmental Management, 2021, 296, 113246.	3.8	99
4	Modeling isotherms, kinetics and understanding the mechanism of phosphate adsorption onto a solid waste: Ground burnt patties. Journal of Environmental Chemical Engineering, 2014, 2, 1331-1342.	3.3	82
5	Evaluation of kinetic and statistical models for predicting breakthrough curves of phosphate removal using dolochar-packed columns. Journal of Water Process Engineering, 2017, 17, 168-180.	2.6	62
6	A mechanistic approach to evaluate the effectiveness of red soil as a natural adsorbent for phosphate removal from wastewater. Desalination and Water Treatment, 2015, 54, 358-373.	1.0	55
7	Effective utilization of a sponge iron industry by-product for phosphate removal from aqueous solution: A statistical and kinetic modelling approach. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 98-108.	2.7	55
8	Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. International Journal of Food Microbiology, 2022, 365, 109538.	2.1	49
9	Nutrient removal from binary aqueous phase by dolochar: Highlighting optimization, single and binary adsorption isotherms and nutrient release. Chemical Engineering Research and Design, 2016, 100, 91-107.	2.7	39
10	Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater. Water Research, 2020, 182, 115965.	5.3	36
11	Role of Bacillus cereus GS-5 strain on simultaneous nitrogen and phosphorous removal from domestic wastewater in an inventive single unit multi-layer packed bed bioreactor. Bioresource Technology, 2018, 262, 251-260.	4.8	35
12	The applicability of anaerobically treated domestic wastewater as a nutrient medium in hydroponic lettuce cultivation: Nitrogen toxicity and health risk assessment. Science of the Total Environment, 2021, 780, 146482.	3.9	34
13	Effects of sodium hypochlorite concentration on the methanogenic activity in an anaerobic fluidized membrane bioreactor. Science of the Total Environment, 2019, 678, 85-93.	3.9	31
14	A critical review on biogas production from edible and non-edible oil cakes. Biomass Conversion and Biorefinery, 2022, 12, 949-966.	2.9	26
15	Micro- and nanoplastics removal mechanisms in wastewater treatment plants: A review. Journal of Hazardous Materials Advances, 2022, 6, 100070.	1.2	26
16	Development of an integrated system for the treatment of rural domestic wastewater: emphasis on nutrient removal. RSC Advances, 2016, 6, 49236-49249.	1.7	24
17	Characterizing Novel Thermophilic Amylase Producing Bacteria From Taptapani Hot Spring, Odisha, India. Jundishapur Journal of Microbiology, 2014, 7, e11800.	0.2	17
18	Assessing Possible Applications of Waste Organic Solid Substances as Carbon Sources and Biofilm Substrates for Elimination of Nitrate Toxicity from Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	1,2	17

#	Article	IF	CITATIONS
19	Response Surface Optimization of Phosphate Removal from Aqueous Solution Using a Natural Adsorbent. , 2017, , 93-104.		13
20	Recent Advancements in Microalgal Mediated Valorisation of Wastewater from Hydrothermal Liquefaction of Biomass. Bioenergy Research, 2023, 16, 45-60.	2.2	13
21	Removal of Textile Dyes from Aqueous Solutions by Dolochar: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	6
22	Comparison between a single unit bioreactor and an integrated bioreactor for nutrient removal from domestic wastewater. Sustainable Energy Technologies and Assessments, 2021, 48, 101620.	1.7	5
23	Microbial Electrochemical Systems (MESs): Promising Alternatives for Energy Sustainability. Handbook of Environmental Chemistry, 2020, , 223-251.	0.2	4
24	Cellulose and extracellular polymer recovery from sludge. , 2022, , 395-404.		3
25	Water reclamation, recycle, and reuse. , 2022, , 39-50.		3
26	Insight into a Waste Material-Based Bioreactor for Nutrient Removal from Domestic Wastewater. Lecture Notes in Civil Engineering, 2020, , 397-407.	0.3	1
27	Circular bioeconomy perspective of agro-waste-based biochar. , 2022, , 223-243.		1
28	The Role of Civil Engineering in Achieving UN Sustainable Development Goals. Springer Transactions in Civil and Environmental Engineering, 2022, , 373-389.	0.3	0