Michael Newton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11727529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Water Stress and Soil Depletion in Variable-Density, Red Alder/Western Hemlock Coastal Oregon Plantations. Forest Science, 2020, 66, 304-313.	1.0	2
2	Eight-year performance of bareroot Douglas-fir and bareroot and plug western larch Seedlings following herbicide applications, northeast Oregon, USA. New Forests, 2018, 49, 791-814.	1.7	4
3	Vegetation Control and Soil Moisture Depletion Related to Herbicide Treatments on Forest Plantations in Northeastern Oregon. Weed Technology, 2018, 32, 461-474.	0.9	3
4	Understory vegetation dynamics 15 years post-thinning in 50-year-old Douglas-fir and Douglas-fir/western hemlock stands in western Oregon, USA. Forest Ecology and Management, 2017, 384, 358-370.	3.2	15
5	Regulating riparian forests for aquatic productivity in the Pacific Northwest, USA: addressing a paradox. Environmental Science and Pollution Research, 2016, 23, 1149-1157.	5.3	12
6	Magnetic Resonance Sensors. Sensors, 2014, 14, 21722-21725.	3.8	2
7	Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR. Sensors, 2014, 14, 2028-2035.	3.8	55
8	Soil water dynamics and water use in a western juniper (Juniperus occidentalis) woodland. Journal of Arid Environments, 2014, 102, 117-126.	2.4	27
9	Abundance of natural regeneration and growth comparisons with planted seedlings 10–13years after commercial thinning in 50-year-old Douglas-fir, Douglas-fir/western hemlock, Oregon Coast Range. Forest Ecology and Management, 2013, 292, 96-110.	3.2	9
10	Influence of streamside buffers on stream temperature response following clear-cut harvesting in western Oregon. Canadian Journal of Forest Research, 2013, 43, 993-1005.	1.7	35
11	Branch diameter and longevity linked to plantation spacing and rectangularity in young Douglas-fir. Forest Ecology and Management, 2012, 266, 75-82.	3.2	14
12	Survival and growth response of white spruce stock types to site preparation in Alaska. Canadian Journal of Forest Research, 2011, 41, 793-809.	1.7	10
13	Ecology and Growth of Whiteleaf Manzanita Within A Ponderosa Pine Plantation in Southwest Oregon. Madroño, 2009, 56, 238-245.	0.4	0
14	Tenth-year survival and size of underplanted seedlings in the Oregon Coast Range. Canadian Journal of Forest Research, 2009, 39, 580-595.	1.7	16
15	More on peer review: quality control for a costly product. Environmental Science and Pollution Research, 2008, 15, 439-442.	5.3	3
16	Acute toxic hazard evaluations of glyphosate herbicide on terrestrial vertebrates of the oregon coast range. Environmental Science and Pollution Research, 2008, 15, 266-272.	5.3	36
17	Why is the productivity of Douglas-fir higher in New Zealand than in its native range in the Pacific Northwest, USA?. Forest Ecology and Management, 2008, 255, 4040-4046.	3.2	36
18	Twenty-six-year response of ponderosa pine and Douglas-fir plantations to woody competitor density in treated stands of madrone and whiteleaf manzanita. Forest Ecology and Management, 2008, 256, 410-420.	3.2	10

MICHAEL NEWTON

#	Article	IF	CITATIONS
19	Benefits of Triazine Herbicides in the Production of Ornamentals and Conifer Trees. , 2008, , 225-234.		4
20	Use of growth curve derivatives to illustrate acceleration and deceleration of growth in young plantations under variable competition. Canadian Journal of Forest Research, 2006, 36, 2515-2522.	1.7	1
21	Harvesting Impacts on Understory Regeneration in Two-Storied Douglas-Fir Stands. Western Journal of Applied Forestry, 2006, 21, 14-18.	0.5	13
22	Taking charge in forest vegetation management. Canadian Journal of Forest Research, 2006, 36, 2357-2363.	1.7	11
23	The story of 2,4,5-t: A case study of science and societal concerns. Environmental Science and Pollution Research, 2004, 11, 207-208.	5.3	7
24	Long overlooked historical information on agent orange and TCDD following massive applications of 2,4,5-t-containing herbicides, eglin air force base, sFlorida. Environmental Science and Pollution Research, 2004, 11, 209-221.	5.3	23
25	Assessment of potential exposure to agent orange and its associated TCDD. Environmental Science and Pollution Research, 2004, 11, 347-348.	5.3	11
26	Environmental fate and bioavailability of agent orange and its associated dioxin during the vietnam war. Environmental Science and Pollution Research, 2004, 11, 359-370.	5.3	55
27	The role of herbicides for enhancing forest productivity and conserving land for biodiversity in North America. Wildlife Society Bulletin, 2004, 32, 1028-1041.	1.6	75
28	Effects of competing vegetation on juvenile white spruce (Picea glauca (Moench) Voss) growth in Alaska. Annals of Forest Science, 2003, 60, 573-583.	2.0	28
29	Cavity-Nester Habitat Development in Artificially Made Douglas-Fir Snags. Journal of Wildlife Management, 2002, 66, 625.	1.8	39
30	Biotic injuries on conifer seedlings planted in forest understory environments. New Forests, 2002, 24, 1-14.	1.7	13
31	A comparison of overstory density measures for describing understory conifer growth. Forest Ecology and Management, 2001, 152, 149-157.	3.2	18
32	Underplanted conifer seedling survival and growth in thinned Douglas-fir stands. Canadian Journal of Forest Research, 2001, 31, 302-312.	1.7	35
33	Fluorescent In Situ Hybridization Evaluation of p53 Gene Deletions at a Tumor Interface of Lingual Carcinoma. Laryngoscope, 2000, 110, 1474-1478.	2.0	3
34	Influence of Streamside Cover and Stream Features on Temperature Trends in Forested Streams of Western Oregon. Western Journal of Applied Forestry, 1999, 14, 106-113.	0.5	61
35	Response of Small Mammals to Clearcutting, Burning, and Glyphosate Application in the Oregon Coast Range. Journal of Wildlife Management, 1998, 62, 1207.	1.8	37
36	Response of Amphibians to Clearcutting, Burning, and Glyphosate Application in the Oregon Coast Range. Journal of Wildlife Management, 1997, 61, 656.	1.8	25

MICHAEL NEWTON

#	Article	IF	CITATIONS
37	Role of lammas growth in recovery of Douglas-fir seedlings from deer browsing, as influenced by weed control, fertilization, and seed source. Canadian Journal of Forest Research, 1996, 26, 936-944.	1.7	17
38	Survival and Growth of Douglas-Fir Relating to Weeding, Fertilization, and Seed Source. Western Journal of Applied Forestry, 1996, 11, 62-69.	0.5	24
39	Enhancing Riparian Habitat for Fish, Wildlife, and Timber in Managed Forests. Weed Technology, 1996, 10, 429-438.	0.9	2
40	The correlation between the loss of chromosome 14q with histologic tumor grade, pathologic stage, and outcome of patients with nonpapillary renal cell carcinoma. , 1996, 77, 1154-1160.		42
41	Seasonal pattern of water depletion from soil–rock profiles in a Mediterranean climate in southwestern Oregon. Canadian Journal of Forest Research, 1996, 26, 1346-1352.	1.7	50
42	Roots growing in rock fissures: Their morphological adaptation. Plant and Soil, 1995, 172, 181-187.	3.7	90
43	Response Surface Analysis of Control of Red Alder and Vine Maple with Glyphosate-Imazapyr and Triclopyr-Imazapyr. Western Journal of Applied Forestry, 1995, 10, 127-132.	0.5	2
44	Dissipation of Glyphosate and Aminomethylphosphonic Acid in North American Forests. Journal of Agricultural and Food Chemistry, 1994, 42, 1795-1802.	5.2	68
45	Young Spruce-Fir Forests Released by Herbicides II. Conifer Response to Residual Hardwoods and Overstocking. Northern Journal of Applied Forestry, 1992, 9, 130-135.	0.5	29
46	Young Spruce-Fir Forests Released by Herbicides I. Response of Hardwoods and Shrubs. Northern Journal of Applied Forestry, 1992, 9, 126-130.	0.5	16
47	Salmonberry Clonal and Population Structure: The Basis for a Persistent Cover. Ecology, 1991, 72, 609-618.	3.2	84
48	Survival and growth of five species of Pinus seedlings after different approaches to competition control: ?bridging? studies between Oregon and Mexico. New Forests, 1991, 5, 219-238.	1.7	3
49	Relationship of Pacific Madrone Sprout Growth to Productivity of Douglas-Fir Seedlings and Understory Vegetation. Western Journal of Applied Forestry, 1990, 5, 20-24.	0.5	10
50	Varying densities of Pacific madrone in a young stand in Oregon alter soil water-potential, plant moisture stress, and growth of Douglas fir. Forest Ecology and Management, 1990, 37, 267-283.	3.2	12
51	Forest weeding reduces the effect of deer-browsing on Douglas fir. Forest Ecology and Management, 1990, 36, 177-185.	3.2	20
52	Competitive interactions of whiteleaf manzanita, herbs, Douglas-fir, and ponderosa pine in southwest Oregon. Canadian Journal of Forest Research, 1989, 19, 232-238.	1.7	24
53	Browse Availability after Conifer Release in Maine's Spruce-Fir Forests. Journal of Wildlife Management, 1989, 53, 643.	1.8	30
54	Growth and Water Relations of Douglas Fir (<i>Pseudotsuga menziesii</i>) Seedlings under Different Weed Control Regimes. Weed Science, 1988, 36, 653-662.	1.5	64

MICHAEL NEWTON

#	Article	IF	CITATIONS
55	Fifth-year responses of Douglas-fir to crowding and nonconiferous competition. Canadian Journal of Forest Research, 1987, 17, 181-186.	1.7	70
56	A Sustained-Yield Scheme for Old-Growth Douglas-fir. Western Journal of Applied Forestry, 1987, 2, 22-25.	0.5	42
57	Biomass and Leaf-Area Estimates for Varnishleaf Ceanothus, Deerbrush, and Whiteleaf Manzanita. Western Journal of Applied Forestry, 1987, 2, 124-128.	0.5	6
58	Nutrient, moisture, and light relations in 5-year-old Douglas-fir plantations under variable competition. Canadian Journal of Forest Research, 1986, 16, 727-732.	1.7	39
59	Fate of glyphosate in an Oregon forest ecosystem. Journal of Agricultural and Food Chemistry, 1984, 32, 1144-1151.	5.2	82
60	Nutrient loss from disturbed forest watersheds in Oregon's coast range. Agro-Ecosystems, 1983, 8, 153-167.	0.2	10
61	Potential Exposure of Humans to 2,4,5-T and TCDD in the Oregon Coast Ranges. Toxicological Sciences, 1981, 1, 339-346.	3.1	0
62	Exposure of forest herbivores to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in areas sprayed with 2,4,5-T. Bulletin of Environmental Contamination and Toxicology, 1978, 20, 743-750.	2.7	16
63	Carbon dioxide exchange of Alnus rubra. Oecologia, 1974, 17, 281-291.	2.0	696
64	Release of Picloram from Roots*. Weed Research, 1972, 12, 391-394.	1.7	3
65	Scolytid and Buprestid Mortality in Ponderosa Pines Injected with Organic Arsenicals123. Journal of Economic Entomology, 1971, 64, 952-958.	1.8	10