List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1172707/publications.pdf Version: 2024-02-01

XIAONING RI

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
3	Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8526-8531.	7.1	338
4	Positive AMPA Receptor Modulation Rapidly Stimulates BDNF Release and Increases Dendritic mRNA Translation. Journal of Neuroscience, 2009, 29, 8688-8697.	3.6	199
5	Cholesterol Accumulation Is Associated with Lysosomal Dysfunction and Autophagic Stress in Npc1â^²/â^² Mouse Brain. American Journal of Pathology, 2007, 171, 962-975.	3.8	189
6	Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends in Neurosciences, 2016, 39, 235-245.	8.6	187
7	Theta Stimulation Polymerizes Actin in Dendritic Spines of Hippocampus. Journal of Neuroscience, 2005, 25, 2062-2069.	3.6	164
8	Postnatal development of inflammation in a murine model of Niemann–Pick type C disease: immunohistochemical observations of microglia and astroglia. Experimental Neurology, 2003, 184, 887-903.	4.1	149
9	Distinct Roles for μ-Calpain and m-Calpain in Synaptic NMDAR-Mediated Neuroprotection and Extrasynaptic NMDAR-Mediated Neurodegeneration. Journal of Neuroscience, 2013, 33, 18880-18892.	3.6	142
10	Chronic Elevation of Brain-Derived Neurotrophic Factor by Ampakines. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 297-305.	2.5	126
11	Brain-Derived Neurotrophic Factor and Epidermal Growth Factor Activate Neuronal m-Calpain via Mitogen-Activated Protein Kinase-Dependent Phosphorylation. Journal of Neuroscience, 2010, 30, 1086-1095.	3.6	113
12	Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus. Neuroscience, 2001, 105, 815-829.	2.3	103
13	UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis. Cell Reports, 2015, 12, 449-461.	6.4	101
14	Different Patterns of Electrical Activity Lead to Long-term Potentiation by Activating Different Intracellular Pathways. Journal of Neuroscience, 2015, 35, 621-633.	3.6	99
15	Uptake and pathogenic effects of amyloid beta peptide 1–42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience, 2002, 112, 827-840.	2.3	98
16	17-β-Estradiol increases neuronal excitability through MAP kinase-induced calpain activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21936-21941.	7.1	98
17	Progesterone–estrogen interactions in synaptic plasticity and neuroprotection. Neuroscience, 2013, 239, 280-294.	2.3	94
18	Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Research, 2015, 1621, 73-81.	2.2	92

#	Article	IF	CITATIONS
19	Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Research, 1996, 726, 98-108.	2.2	86
20	Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiology of Disease, 2012, 47, 210-215.	4.4	85
21	Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Reports, 2016, 16, 79-91.	6.4	82
22	Calpain-mediated regulation of NMDA receptor structure and function. Brain Research, 1998, 790, 245-253.	2.2	79
23	Calpain-2-Mediated PTEN Degradation Contributes to BDNF-Induced Stimulation of Dendritic Protein Synthesis. Journal of Neuroscience, 2013, 33, 4317-4328.	3.6	78
24	Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann-Pick C mice. Journal of Neuroscience Research, 2005, 82, 811-821.	2.9	77
25	A molecular brake controls the magnitude of long-term potentiation. Nature Communications, 2014, 5, 3051.	12.8	77
26	Polarized distribution of ?5 integrin in dendrites of hippocampal and cortical neurons. Journal of Comparative Neurology, 2001, 435, 184-193.	1.6	75
27	Novel Cathepsin D Inhibitors Block the Formation of Hyperphosphorylated Tau Fragments in Hippocampus. Journal of Neurochemistry, 2000, 74, 1469-1477.	3.9	67
28	A Novel Function for p53: Regulation of Growth Cone Motility through Interaction with Rho Kinase. Journal of Neuroscience, 2009, 29, 5183-5192.	3.6	64
29	Inhibition of Geranylgeranylation Mediates the Effects of 3-Hydroxy-3-methylglutaryl (HMG)-CoA Reductase Inhibitors on Microglia. Journal of Biological Chemistry, 2004, 279, 48238-48245.	3.4	63
30	The C-terminal domain of glutamate receptor subunit 1 is a target for calpain-mediated proteolysis. Neuroscience, 1996, 73, 903-906.	2.3	62
31	Imbalanced Mechanistic Target of Rapamycin C1 and C2 Activity in the Cerebellum of Angelman Syndrome Mice Impairs Motor Function. Journal of Neuroscience, 2015, 35, 4706-4718.	3.6	62
32	mTORC1–S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cellular and Molecular Life Sciences, 2016, 73, 4303-4314.	5.4	61
33	Activity-Dependent Rapid Local RhoA Synthesis Is Required for Hippocampal Synaptic Plasticity. Journal of Neuroscience, 2015, 35, 2269-2282.	3.6	59
34	A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. Journal of Cell Biology, 2015, 210, 1225-1237.	5.2	59
35	Phosphorylation regulates calpain-mediated truncation of glutamate ionotropic receptors. Brain Research, 1998, 797, 154-158.	2.2	58
36	Allopregnanolone treatment delays cholesterol accumulation and reduces autophagic/lysosomal dysfunction and inflammation in Npc1â^'/â^' mouse brain. Brain Research, 2009, 1270, 140-151.	2.2	58

#	Article	IF	CITATIONS
37	Effects of the Superoxide Dismutase/Catalase Mimetic EUK-207 in a Mouse Model of Alzheimer's Disease: Protection Against and Interruption of Progression of Amyloid and Tau Pathology and Cognitive Decline. Journal of Alzheimer's Disease, 2012, 30, 183-208.	2.6	58
38	Two synaptotagmin genes, Syt 1 and Syt 4, are differentially regulated in adult brain and during postnatal development following kainic acid-induced seizures. Molecular Brain Research, 1996, 40, 229-239.	2.3	53
39	Increased expression of cyclin D1 in the adult rat brain following kainic acid treatment. NeuroReport, 1996, 7, 2785-2790.	1.2	53
40	Lysosomal Protease Inhibitors Induce Meganeurites and Tangle-like Structures in Entorhinohippocampal Regions Vulnerable to Alzheimer's Disease. Experimental Neurology, 1999, 158, 312-327.	4.1	53
41	Characterization of Calpainâ€Mediated Proteolysis of GluR1 Subunits of αâ€Aminoâ€3â€Hydroxyâ€5â€Methylisoxazoleâ€4â€Propionate Receptors in Rat Brain. Journal of Neurochemist 68, 1484-1494.	ry ş. 9997,	51
42	Calpain-mediated regulation of AMPA receptors in adult rat brain. NeuroReport, 1994, 6, 61-64.	1.2	50
43	The biochemistry of memory: The 26year journey of a â€~new and specific hypothesis'. Neurobiology of Learning and Memory, 2011, 95, 125-133.	1.9	45
44	Regulation of Calpain-2 in Neurons: Implications for Synaptic Plasticity. Molecular Neurobiology, 2010, 42, 143-150.	4.0	44
45	Protection against TBI-Induced Neuronal Death with Post-Treatment with a Selective Calpain-2 Inhibitor in Mice. Journal of Neurotrauma, 2018, 35, 105-117.	3.4	43
46	Calpain-mediated proteolysis of GluR1 subunits in organotypic hippocampal cultures following kainic acid treatment. Brain Research, 1998, 781, 355-357.	2.2	42
47	Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR11± truncation. Experimental Neurology, 2009, 218, 75-82.	4.1	42
48	Targeting calpain in synaptic plasticity. Expert Opinion on Therapeutic Targets, 2013, 17, 579-592.	3.4	42
49	Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiology of Disease, 2016, 93, 121-128.	4.4	42
50	Cholesterol in Niemann–Pick Type C disease. Sub-Cellular Biochemistry, 2010, 51, 319-335.	2.4	40
51	UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity. ELife, 2018, 7, .	6.0	38
52	Autophagic-Lysosomal Dysfunction and Neurodegeneration in Niemann-Pick Type C Mice: Lipid Starvation or Indigestion?. Autophagy, 2007, 3, 646-648.	9.1	36
53	Lysosomes and brain aging in mammals. Neurochemical Research, 2003, 28, 1725-1734.	3.3	34
54	Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Scientific Reports, 2017, 7, 42788.	3.3	34

#	Article	IF	CITATIONS
55	Role of calpain-mediated p53 truncation in semaphorin 3A-induced axonal growth regulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13883-13887.	7.1	33
56	Deregulation of the Phosphatidylinositol-3 Kinase Signaling Cascade Is Associated with Neurodegeneration in Npc1â^'/â^' Mouse Brain. American Journal of Pathology, 2005, 167, 1081-1092.	3.8	32
57	A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology, 2016, 105, 471-477.	4.1	32
58	NMDA Receptor-Mediated Regulation of AMPA Receptor Properties in Organotypic Hippocampal Slice Cultures. Journal of Neurochemistry, 2002, 69, 131-136.	3.9	30
59	Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells, 2020, 9, 2698.	4.1	30
60	Calpain-2 as a therapeutic target for acute neuronal injury. Expert Opinion on Therapeutic Targets, 2018, 22, 19-29.	3.4	28
61	Developmental changes in calpain activity, GluR1 receptors and in the effect of kainic acid treatment in rat brain. Neuroscience, 1997, 81, 1123-1135.	2.3	27
62	Abnormal gene expression in cerebellum of Npc1â^'/â^' mice during postnatal development. Brain Research, 2010, 1325, 128-140.	2.2	27
63	Effects of positive AMPA receptor modulators on calpain-mediated spectrin degradation in cultured hippocampal slices. Neurochemistry International, 2005, 46, 31-40.	3.8	26
64	Prolonged Positive Modulation of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors Induces Calpain-Mediated PSD-95/Dlg/ZO-1 Protein Degradation and AMPA Receptor Down-Regulation in Cultured Hippocampal Slices. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 16-26.	2.5	25
65	The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology, 2011, 61, 1275-1281.	4.1	23
66	Learning and memory: An emergent property of cell motility. Neurobiology of Learning and Memory, 2013, 104, 64-72.	1.9	23
67	β-Amyloid increases cathepsin D levels in hippocampus. Neuroscience Letters, 1998, 250, 75-78.	2.1	22
68	The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Scientific Reports, 2017, 7, 11771.	3.3	22
69	Spatial patterns of mammalian brain aging: Distribution of cathepsin D-immunoreactive cell bodies and dystrophic dendrites in aging dogs resembles that in Alzheimer's disease. Journal of Comparative Neurology, 2003, 464, 371-381.	1.6	21
70	SK2 channel regulation of neuronal excitability, synaptic transmission, and brain rhythmic activity in health and diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118834.	4.1	20
71	Maintenance of Synaptic Stability Requires Calcium-Independent Phospholipase A ₂ Activity. Neural Plasticity, 2012, 2012, 1-13.	2.2	18
72	Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation. PLoS ONE, 2010, 5, e9999.	2.5	18

#	Article	IF	CITATIONS
73	Potential therapeutic approaches for Angelman syndrome. Expert Opinion on Therapeutic Targets, 2016, 20, 601-613.	3.4	16
74	Differential Activation of Calpain-1 and Calpain-2 following Kainate-Induced Seizure Activity in Rats and Mice. ENeuro, 2016, 3, ENEURO.0088-15.2016.	1.9	16
75	Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learning and Memory, 2016, 23, 399-404.	1.3	15
76	Calpain-2 as a therapeutic target in repeated concussion–induced neuropathy and behavioral impairment. Science Advances, 2020, 6, .	10.3	15
77	Posttranslational Regulation of Ionotropic Glutamate Receptors and Synaptic Plasticity. International Review of Neurobiology, 1998, 42, 227-284.	2.0	14
78	Calpain-Mediated Truncation of Glutamate Ionotropic Receptors: Methods for Studying the Effects of Calpain Activation in Brain Tissue. , 2000, 144, 203-217.		14
79	Enhancement of synaptic plasticity and reversal of impairments in motor and cognitive functions in a mouse model of Angelman Syndrome by a small neurogenic molecule, NSI-189. Neuropharmacology, 2019, 144, 337-344.	4.1	12
80	Reduced early hypoxic/ischemic brain damage is associated with increased GLT-1 levels in mice expressing mutant (P301L) human tau. Brain Research, 2009, 1247, 159-170.	2.2	11
81	Calpain-mediated regulation of stargazin in adult rat brain. Neuroscience, 2011, 178, 13-20.	2.3	11
82	Enhanced expression of matrix metalloproteinase-12 contributes to Npc1 deficiency-induced axonal degeneration. Experimental Neurology, 2015, 269, 67-74.	4.1	11
83	Deletion of the Capn1 Gene Results in Alterations in Signaling Pathways Related to Alzheimer's Disease, Protein Quality Control and Synaptic Plasticity in Mouse Brain. Frontiers in Genetics, 2020, 11, 334.	2.3	11
84	Alzheimer disease: update on basic mechanisms. Journal of the American Osteopathic Association, The, 2010, 110, S3-9.	1.7	11
85	Ultrastructural analysis of hippocampal pyramidal neurons from apolipoprotein E-deficient mice treated with a cathepsin inhibitor. Journal of Neurocytology, 2004, 33, 37-48.	1.5	10
86	Impaired cerebellar plasticity and eye-blink conditioning in calpain-1 knock-out mice. Neurobiology of Learning and Memory, 2020, 170, 106995.	1.9	10
87	Calpain-2 activation in mouse hippocampus plays a critical role in seizure-induced neuropathology. Neurobiology of Disease, 2021, 147, 105149.	4.4	10
88	LAMTOR1 inhibition of TRPML1â€dependent lysosomal calcium release regulates dendritic lysosome trafficking and hippocampal neuronal function. EMBO Journal, 2022, 41, e108119.	7.8	8
89	Experimentally induced lysosomal dysfunction disrupts processing of hypothalamic releasing factors. Journal of Comparative Neurology, 1998, 401, 382-394.	1.6	7
90	PKA and Ube3a regulate SK2 channel trafficking to promote synaptic plasticity in hippocampus: Implications for Angelman Syndrome. Scientific Reports, 2020, 10, 9824.	3.3	7

#	Article	IF	CITATIONS
91	Role of Calpain-1 in Neurogenesis. Frontiers in Molecular Biosciences, 2021, 8, 685938.	3.5	7
92	P13BP, a Calpain-2-Mediated Breakdown Product of PTPN13, Is a Novel Blood Biomarker for Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 3077-3085.	3.4	5
93	Novel neurobiological roles of UBE3A. Oncotarget, 2017, 8, 12548-12549.	1.8	3
94	Changes in neurodegeneration-related miRNAs in brains from CAPN1â^'/â^' mice. BBA Advances, 2021, 1, 100004.	1.6	1
95	Yin-and-Yang of mTORC1/C2 in Angelman syndrome mice. Oncotarget, 2015, 6, 13844-13845.	1.8	1
96	To Survive or to Die: How Neurons Deal with it. , 2018, , 19-35.		0
97	Calpainâ€1 Knockout in Mice Causes Degeneration of Cerebellar Granule Cells and Ataxia. FASEB Journal, 2015, 29, 727.8.	0.5	0
98	A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. Journal of Experimental Medicine, 2015, 212, 212110IA92.	8.5	0