
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1172634/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | CO oxidation on MgAl <sub>2</sub> O <sub>4</sub> supported lr <sub><i>n</i></sub> : activation of<br>lattice oxygen in the subnanometer regime and emergence of nuclearity-activity volcano. Journal of<br>Materials Chemistry A, 2022, 10, 4266-4278. | 10.3 | 4         |
| 2  | Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorganic Chemistry, 2022, 61, 8585-8591.                                                                                                                         | 4.0  | 5         |
| 3  | Structure sensitivity of n-butane hydrogenolysis on supported Ir catalysts. Journal of Catalysis, 2021, 394, 376-386.                                                                                                                                  | 6.2  | 11        |
| 4  | Solvent manipulation of the pre-reduction metal–ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles. Nanoscale, 2021, 13, 206-217.                                                                                 | 5.6  | 18        |
| 5  | Solvent molecules form surface redox mediators in situ and cocatalyze O <sub>2</sub> reduction on Pd. Science, 2021, 371, 626-632.                                                                                                                     | 12.6 | 84        |
| 6  | Effect of Pd Coordination and Isolation on the Catalytic Reduction of O <sub>2</sub> to<br>H <sub>2</sub> O <sub>2</sub> over PdAu Bimetallic Nanoparticles. Journal of the American Chemical<br>Society, 2021, 143, 5445-5464.                        | 13.7 | 101       |
| 7  | Reduction and Agglomeration of Supported Metal Clusters Induced by High-Flux X-ray Absorption<br>Spectroscopy Measurements. Journal of Physical Chemistry C, 2021, 125, 11048-11057.                                                                   | 3.1  | 13        |
| 8  | Catalytic CO Oxidation on MgAl <sub>2</sub> O <sub>4</sub> -Supported Iridium Single Atoms: Ligand<br>Configuration and Site Geometry. Journal of Physical Chemistry C, 2021, 125, 11380-11390.                                                        | 3.1  | 13        |
| 9  | Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO <sub>2</sub> . ACS Catalysis, 2021, 11, 8701-8715.                                                              | 11.2 | 51        |
| 10 | 18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene. Cell Reports Physical Science, 2021, 2, 100495.                                                                                | 5.6  | 19        |
| 11 | H2O-assisted O2 reduction by H2 on Pt and PtAu bimetallic nanoparticles: Influences of composition and reactant coverages on kinetic regimes, rates, and selectivities. Journal of Catalysis, 2021, 404, 661-678.                                      | 6.2  | 11        |
| 12 | Kinetic Synergy between Supported Ir Single Atoms and Nanoparticles during CO Oxidation Light-Off.<br>Industrial & Engineering Chemistry Research, 2021, 60, 15960-15971.                                                                              | 3.7  | 3         |
| 13 | Origin of the High CO Oxidation Activity on CeO <sub>2</sub> Supported Pt Nanoparticles: Weaker<br>Binding of CO or Facile Oxygen Transfer from the Support?. ChemCatChem, 2020, 12, 1726-1733.                                                        | 3.7  | 44        |
| 14 | Rh promoted In <sub>2</sub> O <sub>3</sub> as a highly active catalyst for CO <sub>2</sub> hydrogenation to methanol. Catalysis Science and Technology, 2020, 10, 8196-8202.                                                                           | 4.1  | 60        |
| 15 | Structure Sensitivity of Acetylene Semi-Hydrogenation on Pt Single Atoms and Subnanometer<br>Clusters. ACS Catalysis, 2019, 9, 11030-11041.                                                                                                            | 11.2 | 111       |
| 16 | A versatile approach for quantification of surface site fractions using reaction kinetics: The case of<br>CO oxidation on supported Ir single atoms and nanoparticles. Journal of Catalysis, 2019, 378, 121-130.                                       | 6.2  | 49        |
| 17 | The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles.<br>Nanoscale Advances, 2019, 1, 4052-4066.                                                                                                        | 4.6  | 61        |
| 18 | Palladium Acetate Trimer: Understanding Its Ligand-Induced Dissociation Thermochemistry Using<br>Isothermal Titration Calorimetry, X-ray Absorption Fine Structure, and 31P Nuclear Magnetic<br>Resonance. Organometallics, 2019, 38, 451-460.         | 2.3  | 20        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts.<br>Nature Catalysis, 2019, 2, 149-156.                                                                                            | 34.4 | 222       |
| 20 | Ligand-Mediated Nucleation and Growth of Palladium Metal Nanoparticles. Journal of Visualized Experiments, 2018, , .                                                                                                              | 0.3  | 14        |
| 21 | Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the<br>ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale, 2017, 9,<br>13772-13785.                   | 5.6  | 137       |
| 22 | Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope. Langmuir, 2016, 32, 1468-1477.                                                  | 3.5  | 47        |
| 23 | Aqueous phase hydrodeoxygenation of polyols over Pd/WO3-ZrO2: Role of Pd-WO3 interaction and hydrodeoxygenation pathway. Catalysis Today, 2016, 269, 103-109.                                                                     | 4.4  | 20        |
| 24 | Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X-ray Absorption<br>Fine Structure Spectroscopy and Small-Angle X-ray Scattering. Journal of Physical Chemistry C, 2015,<br>119, 13257-13267. | 3.1  | 61        |
| 25 | New insights into reaction mechanisms of ethanol steam reforming on Co–ZrO2. Applied Catalysis B:<br>Environmental, 2015, 162, 141-148.                                                                                           | 20.2 | 67        |
| 26 | Advantages of MgAlO <sub><i>x</i></sub> over γ-Al <sub>2</sub> O <sub>3</sub> as a Support Material<br>for Potassium-Based High-Temperature Lean NO <sub><i>x</i></sub> Traps. ACS Catalysis, 2015, 5,<br>4680-4689.              | 11.2 | 15        |
| 27 | Elucidation of the Roles of Re in Aqueous-Phase Reforming of Glycerol over Pt–Re/C Catalysts. ACS<br>Catalysis, 2015, 5, 7312-7320.                                                                                               | 11.2 | 30        |
| 28 | Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions. Chemical Communications, 2015, 51, 16617-16620.                                                                       | 4.1  | 8         |
| 29 | Elucidation of the roles of Re in steam reforming of glycerol over Pt–Re/C catalysts. Journal of<br>Catalysis, 2015, 322, 49-59.                                                                                                  | 6.2  | 45        |
| 30 | The Role of Ru and RuO <sub>2</sub> in the Catalytic Transfer Hydrogenation of<br>5â€Hydroxymethylfurfural for the Production of 2,5â€Dimethylfuran. ChemCatChem, 2014, 6, 848-856.                                               | 3.7  | 136       |
| 31 | Role of tungsten in the aqueous phase hydrodeoxygenation of ethylene glycol on tungstated zirconia supported palladium. Catalysis Today, 2014, 237, 118-124.                                                                      | 4.4  | 11        |
| 32 | Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 2014, 43, 7594-7623.                                                                                                                               | 38.1 | 864       |
| 33 | Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of <i>m</i> -Cresol. ACS Catalysis, 2014, 4, 3335-3345.                                                                                                   | 11.2 | 173       |
| 34 | Molecular structure and stability of dissolved lithium polysulfide species. Physical Chemistry Chemical Physics, 2014, 16, 10923-10932.                                                                                           | 2.8  | 210       |
| 35 | The effect of ZnO addition on Co/C catalyst for vapor and aqueous phase reforming of ethanol.<br>Catalysis Today, 2014, 233, 38-45.                                                                                               | 4.4  | 25        |
| 36 | Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Applied Catalysis A: General, 2014, 482, 108-115.                                                             | 4.3  | 72        |

| #  | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol.<br>Journal of Catalysis, 2013, 306, 47-57.                                                                                                                                              | 6.2  | 384       |
| 38 | Vapor Phase Ketonization of Acetic Acid on Ceria Based Metal Oxides. Topics in Catalysis, 2013, 56, 1782-1789.                                                                                                                                                                      | 2.8  | 33        |
| 39 | Core–Shell Nanocatalyst Design by Combining Highâ€Throughput Experiments and Firstâ€Principles<br>Simulations. ChemCatChem, 2013, 5, 3712-3718.                                                                                                                                     | 3.7  | 8         |
| 40 | Minimizing the Formation of Coke and Methane on Co Nanoparticles in Steam Reforming of<br>Biomassâ€Đerived Oxygenates. ChemCatChem, 2013, 5, 1299-1303.                                                                                                                             | 3.7  | 34        |
| 41 | In Situ X-ray Absorption Fine Structure Studies on the Effect of pH on Pt Electronic Density during<br>Aqueous Phase Reforming of Glycerol. ACS Catalysis, 2012, 2, 2387-2394.                                                                                                      | 11.2 | 47        |
| 42 | On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110). ACS Catalysis, 2012, 2, 468-478.                                                                                                                                                                                | 11.2 | 16        |
| 43 | General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra. ACS Catalysis, 2012, 2, 2433-2443.                                                                                             | 11.2 | 16        |
| 44 | Correlating Ethylene Glycol Reforming Activity with In Situ EXAFS Detection of Ni Segregation in Supported NiPt Bimetallic Catalysts. ACS Catalysis, 2012, 2, 2290-2296.                                                                                                            | 11.2 | 80        |
| 45 | Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts. ACS Catalysis, 2012, 2, 2349-2356.                                                                                                       | 11.2 | 68        |
| 46 | Correlation of Pt–Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. Journal of Catalysis, 2012, 287, 37-43.                                                                                                                                 | 6.2  | 118       |
| 47 | Density Functional Theory Study of Acetaldehyde Hydrodeoxygenation on MoO <sub>3</sub> . Journal of Physical Chemistry C, 2011, 115, 8155-8164.                                                                                                                                     | 3.1  | 64        |
| 48 | Catalytic Roles of Co <sup>0</sup> and Co <sup>2+</sup> during Steam Reforming of Ethanol on<br>Co/MgO Catalysts. ACS Catalysis, 2011, 1, 279-286.                                                                                                                                  | 11.2 | 98        |
| 49 | Syngas Conditioning. , 2011, , 361-408.                                                                                                                                                                                                                                             |      | 2         |
| 50 | The Effect of Zinc Addition on the Oxidation State of Cobalt in Co/ZrO <sub>2</sub> Catalysts.<br>ChemSusChem, 2011, 4, 1679-1684.                                                                                                                                                  | 6.8  | 36        |
| 51 | A comparative study between Co and Rh for steam reforming of ethanol. Applied Catalysis B:<br>Environmental, 2010, 96, 441-448.                                                                                                                                                     | 20.2 | 77        |
| 52 | Aqueous phase reforming of glycerol for hydrogen production over Pt–Re supported on carbon.<br>Applied Catalysis B: Environmental, 2010, 99, 206-213.                                                                                                                               | 20.2 | 193       |
| 53 | High throughput multiscale modeling for design of experiments, catalysts, and reactors: Application to hydrogen production from ammonia. Chemical Engineering Science, 2010, 65, 240-246.                                                                                           | 3.8  | 31        |
| 54 | Assessment of Overall Rate Expressions and Multiscale, Microkinetic Model Uniqueness via<br>Experimental Data Injection: Ammonia Decomposition on Ru/γ-Al <sub>2</sub> O <sub>3</sub> for<br>Hydrogen Production. Industrial & Engineering Chemistry Research, 2009, 48, 5255-5265. | 3.7  | 69        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Correlating Particle Size and Shape of Supported Ru/γ-Al <sub>2</sub> O <sub>3</sub> Catalysts with NH <sub>3</sub> Decomposition Activity. Journal of the American Chemical Society, 2009, 131, 12230-12239. | 13.7 | 279       |
| 56 | Portable power production from methanol in an integrated thermoeletric/microreactor system.<br>Journal of Power Sources, 2008, 179, 113-120.                                                                  | 7.8  | 91        |
| 57 | Synthesis and Activity of Heterogeneous Pd/Al2O3 and Pd/ZnO Catalysts Prepared from Colloidal Palladium Nanoparticles. Topics in Catalysis, 2008, 49, 227-232.                                                | 2.8  | 25        |
| 58 | Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. Journal of Catalysis, 2008, 257, 64-70.                                                                                          | 6.2  | 174       |
| 59 | Controlling ZnO morphology for improved methanol steam reforming reactivity. Physical Chemistry<br>Chemical Physics, 2008, 10, 5584.                                                                          | 2.8  | 63        |
| 60 | Coating of steam reforming catalysts in non-porous multi-channeled microreactors. Catalysis Today, 2007, 125, 11-15.                                                                                          | 4.4  | 25        |
| 61 | Wall coating behavior of catalyst slurries in non-porous ceramic microstructures. Chemical Engineering Science, 2006, 61, 5678-5685.                                                                          | 3.8  | 21        |
| 62 | The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. Journal of Catalysis, 2006, 243, 420-427.                                                              | 6.2  | 146       |
| 63 | Comparison of wall-coated and packed-bed reactors for steam reforming of methanol. Catalysis<br>Today, 2005, 110, 86-91.                                                                                      | 4.4  | 162       |
| 64 | Nonisothermality in packed bed reactors for steam reforming of methanol. Applied Catalysis A:<br>General, 2005, 282, 101-109.                                                                                 | 4.3  | 110       |
| 65 | Wall coating of a CuO/ZnO/Al2O3 methanol steam reforming catalyst for micro-channel reformers.<br>Chemical Engineering Journal, 2004, 101, 113-121.                                                           | 12.7 | 123       |