Atanu Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1172562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glacial lakes exacerbate Himalayan glacier mass loss. Scientific Reports, 2019, 9, 18145.	1.6	130
2	High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nature Communications, 2021, 12, 4133.	5.8	120
3	Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. Journal of Glaciology, 2016, 62, 1115-1133.	1.1	92
4	Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya. Climatic Change, 2018, 148, 219-233.	1.7	54
5	Mapping ice cliffs on debris-covered glaciers using multispectral satellite images. Remote Sensing of Environment, 2021, 253, 112201.	4.6	30
6	Six Decades of Glacier Mass Changes around Mt. Everest Are Revealed by Historical and Contemporary Images. One Earth, 2020, 3, 608-620.	3.6	29
7	Review on InSAR based displacement monitoring of Indian Himalayas: issues, challenges and possible advanced alternatives. Geocarto International, 2017, 32, 298-321.	1.7	26
8	Remote Sensing for Characterisation and Kinematic Analysis of Large Slope Failures: Debre Sina Landslide, Main Ethiopian Rift Escarpment. Remote Sensing, 2015, 7, 16183-16203.	1.8	20
9	Potential of SAR intensity tracking technique to estimate displacement rate in a landslide-prone area in Haridwar region, India. Natural Hazards, 2015, 79, 2101-2121.	1.6	19
10	The presence and influence of glacier surging around the Geladandong ice caps, North East Tibetan Plateau. Advances in Climate Change Research, 2021, 12, 299-299.	2.1	17
11	Usefulness of synthetic aperture radar (SAR) interferometry for digital elevation model (DEM) generation and estimation of land surface displacement in Jharia coal field area. Geocarto International, 2012, 27, 57-77.	1.7	16
12	Comparative performance of fractal based and conventional methods for dimensionality reduction of hyperspectral data. Optics and Lasers in Engineering, 2014, 55, 267-274.	2.0	10
13	Surface displacement estimation using space-borne SAR interferometry in a small portion along Himalayan Frontal Fault. Optics and Lasers in Engineering, 2014, 53, 164-178.	2.0	8
14	Earth Observation to Investigate Occurrence, Characteristics and Changes of Glaciers, Glacial Lakes and Rock Glaciers in the Poiqu River Basin (Central Himalaya). Remote Sensing, 2022, 14, 1927.	1.8	8
15	Surface displacement estimation along Himalayan frontal fault using differential SAR interferometry. Natural Hazards, 2012, 64, 1105-1123.	1.6	7
16	Usefulness of adaptive filtering for improved Digital Elevation Model generation. Journal of the Geological Society of India, 2013, 82, 153-161.	0.5	4
17	Surface displacement estimation using multi-temporal SAR Interferometry in a seismically active region of the Himalaya. Georisk, 2013, 7, 184-197.	2.6	4
18	Time series insar techniques to estimate deformation in a landslide-prone area in Haridwar region, India. , 2016, , .		2

#	Article	IF	CITATIONS
19	Multi-decadal mass budget and area change of some eastern Himalayan glaciers (Nepal-Sikkim) using remote sensing techniques. , 2018, , .		2
20	Microwave remote sensing based small baseline subset technique for estimation of slope movement in nainital area, India. , 2017, , .		0