
Dipan Kundu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117251/publications.pdf Version: 2024-02-01

ΠΙσλη Κιινισιι

#	Article	IF	CITATIONS
1	A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 2016, 1, .	19.8	2,167
2	The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 3431-3448.	7.2	1,772
3	Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 2020, 4, 771-799.	11.7	1,164
4	Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 2014, 5, 4759.	5.8	1,122
5	Aqueous <i>vs.</i> nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy and Environmental Science, 2018, 11, 881-892.	15.6	604
6	A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons, 2016, 3, 130-136.	6.4	409
7	Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling. Chemistry of Materials, 2018, 30, 3874-3881.	3.2	373
8	Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries. Joule, 2019, 3, 136-148.	11.7	256
9	A highly active nanostructured metallic oxide cathode for aprotic Li–O ₂ batteries. Energy and Environmental Science, 2015, 8, 1292-1298.	15.6	213
10	Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications, 2015, 51, 2308-2311.	2.2	206
11	Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Interfaces, 2019, 11, 674-682.	4.0	199
12	A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries. ACS Central Science, 2015, 1, 510-515.	5.3	175
13	Advances in Natural Biopolymerâ€Based Electrolytes and Separators for Battery Applications. Advanced Functional Materials, 2021, 31, 2005646.	7.8	146
14	Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 3522-3530.	4.0	123
15	An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane. ACS Applied Energy Materials, 2019, 2, 1288-1294.	2.5	118
16	Nanostructured Metal Carbides for Aprotic Li–O ₂ Batteries: New Insights into Interfacial Reactions and Cathode Stability. Journal of Physical Chemistry Letters, 2015, 6, 2252-2258.	2.1	111
17	Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. Journal of Power Sources, 2013, 236, 112-117.	4.0	91
18	The Nature and Impact of Side Reactions in Glymeâ€based Sodium–Oxygen Batteries. ChemSusChem, 2016, 9, 1795-1803.	3.6	76

Dipan Kundu

#	Article	IF	CITATIONS
19	Fast Naâ€lon Intercalation in Zinc Vanadate for Highâ€Performance Naâ€lon Hybrid Capacitor. Advanced Energy Materials, 2018, 8, 1802800.	10.2	72
20	Longâ€Life Zn Anode Enabled by Low Volume Concentration of a Benign Electrolyte Additive. Advanced Functional Materials, 2022, 32, .	7.8	60
21	A nanocrystalline nitride as an insertion anode for Li-ion batteries. Journal of Power Sources, 2015, 278, 608-613.	4.0	56
22	Nano LiMnBO3, a high-capacity cathode material for Li-ion batteries. Journal of Power Sources, 2013, 224, 145-151.	4.0	51
23	A Single Li-Ion Conductor Based on Cellulose. ACS Applied Energy Materials, 2019, 2, 5686-5691.	2.5	45
24	The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solidâ€ 5 tate Batteries: A Case Study with Li ₆ PS ₅ Cl Solid Electrolyte. Advanced Materials Interfaces, 2021, 8, 2100206.	1.9	42
25	Synthesis, Structure, and Na-Ion Migration in Na ₄ NiP ₂ O ₇ E ₂ : A Prospective High Voltage Positive Electrode Material for the Na-Ion Battery. Chemistry of Materials, 2015, 27, 885-891.	3.2	39
26	Nanoscale Heterostructures with Molecular-Scale Single-Crystal Metal Wires. Journal of the American Chemical Society, 2010, 132, 20-21.	6.6	34
27	Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials, 2021, 33, 6029-6040.	3.2	28
28	Understanding and Performance of the Zinc Anode Cycling in Aqueous Zincâ€ion Batteries and a Roadmap for the Future. Batteries and Supercaps, 2022, 5, .	2.4	27
29	A low dimensional composite of hexagonal lithium manganese borate (LiMnBO ₃), a cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18946-18951.	5.2	22
30	Stack Pressure Effect in Li ₃ PS ₄ and Na ₃ PS ₄ Based Alkali Metal Solid-State Cells: The Dramatic Implication of Interlayer Growth. Chemistry of Materials, 2020, 32, 10501-10510.	3.2	20
31	A 4 V Na ⁺ Intercalation Material in a New Naâ€Ion Cathode Family. Advanced Energy Materials, 2018, 8, 1701729.	10.2	18
32	A highly stable 1.3ÂV organic cathode for aqueous zinc batteries designed in-situ by solid-state electrooxidation. Energy Storage Materials, 2022, 46, 129-137.	9.5	11
33	Aqueous Zn-ion batteries: Cathode materials and analysis. Current Opinion in Electrochemistry, 2022, 33, 100954.	2.5	9
34	Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction. ACS Omega, 2019, 4, 2684-2692.	1.6	6
35	Electrochemical Stability of Prospective Current Collectors in the Sulfate Electrolyte for Aqueous Zn-Ion Battery Application. Journal of the Electrochemical Society, 2021, 168, 090560.	1.3	5
36	Towards Better Aqueous Zn Batteries: Through in-Depth Understanding and Cathode Host Development. ECS Meeting Abstracts, 2018, , .	0.0	1

#	Article	IF	CITATIONS
37	Nature of Alkali Ion Conduction and Reversible Na-Ion Storage in Hybrid Formate Framework Materials. Journal of Physical Chemistry C, 2020, 124, 26714-26721.	1.5	ο
38	Development of Novel Ionomer Electrolytes for Alkali Metal Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
39	Battery anode interphase construction via carbon capture. Joule, 2022, 6, 949-950.	11.7	0