
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1172314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CoPâ€Doped MOFâ€Based Electrocatalyst for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4679-4684.	7.2	480
2	Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. Journal of the American Chemical Society, 2019, 141, 17763-17770.	6.6	436
3	Ultrathin Nitrogen-Doped Carbon Coated with CoP for Efficient Hydrogen Evolution. ACS Catalysis, 2017, 7, 3824-3831.	5.5	404
4	Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Letters, 2017, 2, 1070-1075.	8.8	366
5	Tailoring the Electronic Structure of Co ₂ P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. ACS Catalysis, 2019, 9, 3744-3752.	5.5	357
6	Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 9978-9985.	6.6	345
7	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	8.2	319
8	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	5.5	295
9	Self‣acrificial Templateâ€Directed Vaporâ€Phase Growth of MOF Assemblies and Surface Vulcanization for Efficient Water Splitting. Advanced Materials, 2019, 31, e1806672.	11.1	248
10	Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygenâ€Vacancyâ€Rich CeO ₂ /Ni Heterostructures. Angewandte Chemie - International Edition, 2019, 58, 14179-14183.	7.2	223
11	Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O ₂ on Fe/N-Doped Graphene. ACS Catalysis, 2014, 4, 4170-4177.	5.5	215
12	Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catalysis, 2016, 6, 6335-6342.	5.5	210
13	Synergistically Tuning Water and Hydrogen Binding Abilities Over Co ₄ N by Cr Doping for Exceptional Alkaline Hydrogen Evolution Electrocatalysis. Advanced Energy Materials, 2019, 9, 1902449.	10.2	205
14	Extremely Weak van der Waals Coupling in Vertical ReS ₂ Nanowalls for Highâ€Currentâ€Đensity Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 2616-2623.	11.1	204
15	Electrocatalysis under Conditions of High Mass Transport Rate:Â Oxygen Reduction on Single Submicrometer-Sized Pt Particles Supported on Carbon. Journal of Physical Chemistry B, 2004, 108, 3262-3276.	1.2	200
16	Electrocatalysis under Conditions of High Mass Transport:  Investigation of Hydrogen Oxidation on Single Submicron Pt Particles Supported on Carbon. Journal of Physical Chemistry B, 2004, 108, 13984-13994.	1.2	185
17	A Monodisperse Rh ₂ Pâ€Based Electrocatalyst for Highly Efficient and pHâ€Universal Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703489.	10.2	180
18	Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 253, 21-27.	10.8	172

#	Article	IF	CITATIONS
19	Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. Journal of Materials Chemistry, 2012, 22, 6010.	6.7	160
20	A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient water-splitting. Journal of Materials Chemistry A, 2016, 4, 16057-16063.	5.2	156
21	Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 15668-15674.	5.2	155
22	NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 14299-14306.	5.2	147
23	An Fe–N–C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 11357-11364.	5.2	142
24	A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chemical Communications, 2006, , 2257.	2.2	137
25	The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochemistry Communications, 2008, 10, 293-297.	2.3	133
26	Ni@Pt Coreâ^'Shell Nanoparticles:  Synthesis, Structural and Electrochemical Properties. Journal of Physical Chemistry C, 2008, 112, 1645-1649.	1.5	133
27	NaCl Crystallites as Dual-Functional and Water-Removable Templates To Synthesize a Three-Dimensional Graphene-like Macroporous Fe-N-C Catalyst. ACS Catalysis, 2017, 7, 6144-6149.	5.5	131
28	Twinned growth behaviour of two-dimensional materials. Nature Communications, 2016, 7, 13911.	5.8	123
29	Ni–Pt Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts: Effect of Pt Shell Coverage. Journal of Physical Chemistry C, 2011, 115, 24073-24079.	1.5	121
30	Electrodeposition of Platinum on Nanometer-Sized Carbon Electrodes. Journal of Physical Chemistry B, 2003, 107, 8392-8402.	1.2	120
31	Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. Electrochemical Energy Reviews, 2021, 4, 336-381.	13.1	120
32	Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochemistry Communications, 2007, 9, 349-353.	2.3	119
33	Fe–N doped carbon nanotube/graphene composite: facile synthesis and superior electrocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 3302.	5.2	115
34	Dynamic Diffuse Double-Layer Model for the Electrochemistry of Nanometer-Sized Electrodes. Journal of Physical Chemistry B, 2006, 110, 3262-3270.	1.2	112
35	IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. International Journal of Hydrogen Energy, 2014, 39, 6967-6976.	3.8	110
36	Editors' Choice—Review—Impedance Response of Porous Electrodes: Theoretical Framework, Physical Models and Applications. Journal of the Electrochemical Society, 2020, 167, 166503.	1.3	107

#	Article	IF	CITATIONS
37	Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochemistry Communications, 2002, 4, 80-85.	2.3	104
38	A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. EScience, 2022, 2, 438-444.	25.0	103
39	CoPâ€Doped MOFâ€Based Electrocatalyst for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 4727-4732.	1.6	102
40	N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2012, 81, 313-320.	2.6	97
41	Toward biomass-based single-atom catalysts and plastics: Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols. Applied Catalysis B: Environmental, 2019, 256, 117767.	10.8	96
42	Ir-Surface Enriched Porous Ir–Co Oxide Hierarchical Architecture for High Performance Water Oxidation in Acidic Media. ACS Applied Materials & Interfaces, 2014, 6, 12729-12736.	4.0	91
43	Highly efficient hydrogen generation from formic acid-sodium formate over monodisperse AgPd nanoparticles at room temperature. Applied Catalysis B: Environmental, 2015, 168-169, 423-428.	10.8	90
44	Graphene Nanoelectrodes: Fabrication and Size-Dependent Electrochemistry. Journal of the American Chemical Society, 2013, 135, 10073-10080.	6.6	89
45	Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochemistry Communications, 2010, 12, 1646-1649.	2.3	88
46	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 7013-7017.	7.2	88
47	Controllable Increase of Boron Content in B-Pd Interstitial Nanoalloy To Boost the Oxygen Reduction Activity of Palladium. Chemistry of Materials, 2017, 29, 10060-10067.	3.2	83
48	In Situ Generated Dual-Template Method for Fe/N/S Co-Doped Hierarchically Porous Honeycomb Carbon for High-Performance Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 8721-8729.	4.0	83
49	Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chemical Society Reviews, 2014, 43, 5372-5386.	18.7	82
50	The Voltammetric Response of Nanometer-Sized Carbon Electrodes. Journal of Physical Chemistry B, 2002, 106, 9396-9404.	1.2	81
51	Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights. Chemical Society Reviews, 2022, 51, 1529-1546.	18.7	80
52	Oxygen-Inserted Top-Surface Layers of Ni for Boosting Alkaline Hydrogen Oxidation Electrocatalysis. Journal of the American Chemical Society, 2022, 144, 12661-12672.	6.6	75
53	Inter-regulated d-band centers of the Ni ₃ B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chemical Science, 2020, 11, 12118-12123.	3.7	74
54	Pyridinicâ€N Protected Synthesis of 3D Nitrogenâ€Doped Porous Carbon with Increased Mesoporous Defects for Oxygen Reduction. Small, 2019, 15, e1805325.	5.2	70

#	Article	IF	CITATIONS
55	Monodisperse Palladium Sulfide as Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2018, 10, 753-761.	4.0	68
56	First-Principle Study of the Adsorption and Dissociation of O ₂ on Pt(111) in Acidic Media. Journal of Physical Chemistry C, 2009, 113, 20657-20665.	1.5	66
57	Electrochemistry at nanometer-sized electrodes. Physical Chemistry Chemical Physics, 2014, 16, 635-652.	1.3	64
58	Tailoring molecular architectures of Fe phthalocyanine on nanocarbon supports for high oxygen reduction performance. Journal of Materials Chemistry A, 2015, 3, 10013-10019.	5.2	63
59	Metal–organic framework-derived hybrid of Fe ₃ C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catalysis Science and Technology, 2016, 6, 6365-6371.	2.1	63
60	Energetic Span as a Rate-Determining Term for Electrocatalytic Volcanos. ACS Catalysis, 2018, 8, 10590-10598.	5.5	63
61	Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2021, 284, 119718.	10.8	63
62	Comparative Study of Oxygen Reduction Reaction Mechanisms on the Pd(111) and Pt(111) Surfaces in Acid Medium by DFT. Journal of Physical Chemistry C, 2013, 117, 1342-1349.	1.5	59
63	Improved microbial electrocatalysis with neutral red immobilized electrode. Journal of Power Sources, 2011, 196, 164-168.	4.0	58
64	A rotating disk electrode study of the particle size effects of Pt for the hydrogen oxidation reaction. Physical Chemistry Chemical Physics, 2012, 14, 2278.	1.3	57
65	Ultrafast Self-Limited Growth of Strictly Monolayer WSe ₂ Crystals. Small, 2016, 12, 5741-5749.	5.2	57
66	Alkaline Polymer Membraneâ€Based Ultrathin, Flexible, and Highâ€Performance Solidâ€State Znâ€Air Battery. Advanced Energy Materials, 2019, 9, 1803628.	10.2	57
67	Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone. Journal of Materials Chemistry A, 2016, 4, 12768-12773.	5.2	55
68	Facile Synthesis of a N-Doped Fe ₃ C@CNT/Porous Carbon Hybrid for an Advanced Oxygen Reduction and Water Oxidation Electrocatalyst. Journal of Physical Chemistry C, 2016, 120, 11006-11013.	1.5	54
69	A Theoretical Consideration on the Surface Structure and Nanoparticle Size Effects of Pt in Hydrogen Electrocatalysis. Journal of Physical Chemistry C, 2011, 115, 19311-19319.	1.5	52
70	Theory of Electrochemistry for Nanometer-Sized Disk Electrodes. Journal of Physical Chemistry C, 2010, 114, 10812-10822.	1.5	51
71	Efficient and Superiorly Durable Pt-Lean Electrocatalysts of Ptâ^'W Alloys for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 2162-2168.	1.5	51
72	Rotating disk electrode measurements of activity and stability of monolayer Pt on tungsten carbide disks for oxygen reduction reaction. Journal of Power Sources, 2012, 199, 46-52.	4.0	49

#	Article	IF	CITATIONS
73	Enhanced-electrocatalytic activity of Pt nanoparticles supported onÂnitrogen-doped carbon for the oxygen reduction reaction. Journal of Power Sources, 2013, 240, 60-65.	4.0	47
74	Oxygen Reduction Electrocatalyst of Pt on Au Nanoparticles through Spontaneous Deposition. ACS Applied Materials & Interfaces, 2015, 7, 823-829.	4.0	47
75	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
76	Anodic Transformation of a Core‣hell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2106835.	7.8	47
77	Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science, 2020, 1, 100136.	2.8	46
78	Edge-to-Edge Oriented Self-Assembly of ReS ₂ Nanoflakes. Journal of the American Chemical Society, 2016, 138, 11101-11104.	6.6	43
79	Carbon oxidation reactions could misguide the evaluation of carbon black-based oxygen-evolution electrocatalysts. Chemical Communications, 2017, 53, 11556-11559.	2.2	43
80	Self-Powered and Highly Efficient Production of H ₂ O ₂ through a Zn–Air Battery with Oxygenated Carbon Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 31855-31859.	4.0	43
81	Synergistic increase of oxygen reduction favourable Fe–N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets. Physical Chemistry Chemical Physics, 2013, 15, 18482.	1.3	42
82	Controllable Heteroatom Doping Effects of Cr <i>_x</i> Co _{2–<i>x</i>} P Nanoparticles: a Robust Electrocatalyst for Overall Water Splitting in Alkaline Solutions. ACS Applied Materials & Interfaces, 2020, 12, 47397-47407.	4.0	39
83	Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. Nano Energy, 2020, 74, 104877.	8.2	39
84	High-Performance Ru ₂ P Anodic Catalyst for Alkaline Polymer Electrolyte Fuel Cells. CCS Chemistry, 2022, 4, 1732-1744.	4.6	39
85	One-pot synthesis of carbon-supported monodisperse palladium nanoparticles as excellent electrocatalyst for ethanol and formic acid oxidation. Journal of Power Sources, 2015, 292, 72-77.	4.0	38
86	Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 4641-4644.	3.2	38
87	Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygenâ€Vacancyâ€Rich CeO ₂ /Ni Heterostructures. Angewandte Chemie, 2019, 131, 14317-14321.	1.6	38
88	Quantitative Understanding of the Sluggish Kinetics of Hydrogen Reactions in Alkaline Media Based on a Microscopic Hamiltonian Model for the Volmer Step. Journal of Physical Chemistry C, 2019, 123, 17325-17334.	1.5	38
89	On the Applicability of Conventional Voltammetric Theory to Nanoscale Electrochemical Interfaces. Journal of Physical Chemistry C, 2009, 113, 9878-9883.	1.5	37
90	Discrepant roles of adsorbed OH* species on IrWO for boosting alkaline hydrogen electrocatalysis. Science Bulletin, 2020, 65, 1735-1742.	4.3	37

#	Article	IF	CITATIONS
91	Electrocatalytic O ₂ Reduction on Pt: Multiple Roles of Oxygenated Adsorbates, Nature of Active Sites, and Origin of Overpotential. Journal of Physical Chemistry C, 2017, 121, 6209-6217.	1.5	35
92	Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation. ACS Applied Materials & Interfaces, 2018, 10, 28664-28671.	4.0	34
93	Pt-Pd nanodendrites as oxygen reduction catalyst in polymer-electrolyte-membrane fuel cell. International Journal of Hydrogen Energy, 2017, 42, 25234-25243.	3.8	33
94	Establishment of the Potential of Zero Charge of Metals in Aqueous Solutions: Different Faces of Water Revealed by Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2021, 125, 3972-3979.	1.5	33
95	High index surface-exposed and composition-graded PtCu3@Pt3Cu@Pt nanodendrites for high-performance oxygen reduction. Chinese Journal of Catalysis, 2021, 42, 1108-1116.	6.9	33
96	Unravelling the synergy of oxygen vacancies and gold nanostars in hematite for the electrochemical and photoelectrochemical oxygen evolution reaction. Nano Energy, 2022, 94, 106968.	8.2	33
97	Pt–W bimetallic alloys as CO-tolerant PEMFC anode catalysts. Electrochimica Acta, 2013, 89, 744-748.	2.6	31
98	Electron-Transfer Kinetics and Electric Double Layer Effects in Nanometer-Wide Thin-Layer Cells. ACS Nano, 2014, 8, 10426-10436.	7.3	31
99	Ir-oriented nanocrystalline assemblies with high activity for hydrogen oxidation/evolution reactions in an alkaline electrolyte. Journal of Materials Chemistry A, 2017, 5, 22959-22963.	5.2	31
100	Controlled Synthesis of Au-Island-Covered Pd Nanotubes with Abundant Heterojunction Interfaces for Enhanced Electrooxidation of Alcohol. ACS Applied Materials & amp; Interfaces, 2016, 8, 12792-12797.	4.0	30
101	Theoretical Analysis of Electrochemical Formation and Phase Transition of Oxygenated Adsorbates on Pt(111). ACS Applied Materials & amp; Interfaces, 2016, 8, 20448-20458.	4.0	29
102	Boosting Superior Lithium Storage Performance of Alloyâ€Based Anode Materials via Ultraconformal Sb Coating–Derived Favorable Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2020, 10, 1903186.	10.2	29
103	<i>In Situ</i> Construction of an Ultrarobust and Lithiophilic Li-Enriched Li–N Nanoshield for High-Performance Ge-Based Anode Materials. ACS Energy Letters, 2020, 5, 3490-3497.	8.8	29
104	Boosting alkaline hydrogen evolution electrocatalysis through electronic communicating vessels on Co2P/Co4N heterostructure catalyst. Chemical Engineering Journal, 2022, 433, 133831.	6.6	28
105	Potential of zero charge and surface charging relation of metal-solution interphases from a constant-potential jellium-Poisson-Boltzmann model. Physical Review B, 2020, 101, .	1.1	27
106	Theory of Interfacial Electron Transfer Kinetics at Nanometer-Sized Electrodes. Journal of Physical Chemistry C, 2012, 116, 13594-13602.	1.5	26
107	A General Electrochemical Strategy for Synthesizing Chargeâ€Transfer Complex Micro/Nanowires. Advanced Functional Materials, 2010, 20, 1209-1223.	7.8	25
108	Fe3C Nanorods Encapsulated in N-Doped Carbon Nanotubes as Active Electrocatalysts for Hydrogen Evolution Reaction. Electrocatalysis, 2018, 9, 264-270.	1.5	24

#	Article	IF	CITATIONS
109	Nitridation-induced metal–organic framework nanosheet for enhanced water oxidation electrocatalysis. Journal of Energy Chemistry, 2022, 64, 531-537.	7.1	23
110	Induced growth of Fe-N x active sites using carbon templates. Chinese Journal of Catalysis, 2018, 39, 1427-1435.	6.9	22
111	The Underlying Mechanism for Reduction Stability of Organic Electrolytes in Lithium Secondary Batteries. Chemical Science, 2021, 12, 9037-9041.	3.7	22
112	Interplay between Covalent and Noncovalent Interactions in Electrocatalysis. Journal of Physical Chemistry C, 2018, 122, 26910-26921.	1.5	21
113	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie, 2021, 133, 7089-7093.	1.6	20
114	Grand-Canonical Model of Electrochemical Double Layers from a Hybrid Density–Potential Functional. Journal of Chemical Theory and Computation, 2021, 17, 2417-2430.	2.3	20
115	Rhodium Phosphide: A New Type of Hydrogen Oxidation Reaction Catalyst with Nonâ€Linear Correlated Catalytic Response to pH. ChemElectroChem, 2019, 6, 1990-1995.	1.7	19
116	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. , 2020, 2, 358-366.		19
117	Hybrid of Fe3O4 nanorods and N-doped carbon as efficient oxygen reduction electrocatalyst. International Journal of Hydrogen Energy, 2016, 41, 16858-16864.	3.8	18
118	The voltammetric responses of nanometer-sized electrodes in weakly supported electrolyte: A theoretical study. Electrochimica Acta, 2010, 55, 8280-8286.	2.6	17
119	Charge transport in confined concentrated solutions: A minireview. Current Opinion in Electrochemistry, 2019, 13, 107-111.	2.5	17
120	A DFT calculation study on the temperature-dependent hydrogen electrocatalysis on Pt(111) surface. Journal of Electroanalytical Chemistry, 2013, 688, 158-164.	1.9	16
121	Theoretical study of stability of metal-N4 macrocyclic compounds in acidic media. Chinese Journal of Catalysis, 2016, 37, 1166-1171.	6.9	16
122	Amine–borane assisted synthesis of wavy palladium nanorods on graphene as efficient catalysts for formic acid oxidation. Chemical Communications, 2014, 50, 12843-12846.	2.2	15
123	Surfactant-Template Preparation of Polyaniline Semi-Tubes for Oxygen Reduction. Catalysts, 2015, 5, 1202-1210.	1.6	15
124	A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes. Faraday Discussions, 2016, 193, 251-263.	1.6	15
125	Hierarchically porous Fe–N–C nanospindles derived from a porphyrinic coordination network for oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 1945-1952.	2.1	15
126	Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions. Science China Chemistry, 2019, 62, 515-520.	4.2	15

#	Article	IF	CITATIONS
127	Top-Open Hollow Nanocubes of Ni-Doped Cu Oxides on Ni Foam: Scalable Oxygen Evolution Electrode via Galvanic Displacement and Face-Selective Etching. ACS Applied Materials & Interfaces, 2020, 12, 11600-11606.	4.0	15
128	Template synthesis of 3-DOM IrO2 powder catalysts: temperature-dependent pore structure and electrocatalytic performance. Journal of Materials Science, 2015, 50, 2984-2992.	1.7	14
129	Understanding Dynamics of Electrochemical Double Layers via a Modified Concentrated Solution Theory. Journal of the Electrochemical Society, 2020, 167, 013519.	1.3	14
130	Small-Molecule (CO, H ₂) Electro-Oxidation as an Electrochemical Tool for Characterization of Ni@Pt/C with Different Pt Coverages. Journal of Physical Chemistry C, 2015, 119, 7138-7145.	1.5	12
131	DFT calculation analysis of oxygen reduction activity and stability of bimetallic catalysts with Pt-segregated surface. Science China Chemistry, 2015, 58, 586-592.	4.2	12
132	Selective-leaching method to fabricate an Ir surface-enriched Ir-Ni oxide electrocatalyst for water oxidation. Journal of Solid State Electrochemistry, 2016, 20, 1961-1970.	1.2	12
133	Microscopic EDL structures and charge–potential relation on stepped platinum surface: Insights from the <i>ab initio</i> molecular dynamics simulations. Journal of Chemical Physics, 2022, 156, 104701.	1.2	12
134	Understanding the ORR Electrocatalysis on Co–Mn Oxides. Journal of Physical Chemistry C, 2021, 125, 25470-25477.	1.5	11
135	The Universal Growth of Ultrathin Perovskite Single Crystals. Advanced Materials, 2022, 34, e2108396.	11.1	11
136	Electronic structure related electric-double-layer effects on heterogeneous ET kinetics on graphene electrode. Journal of Electroanalytical Chemistry, 2015, 753, 3-8.	1.9	10
137	Electrocatalytic volcano relations: surface occupation effects and rational kinetic models. Chinese Journal of Catalysis, 2022, 43, 2-10.	6.9	9
138	Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic Fell-N4 oxygen reduction active sites. Chinese Journal of Catalysis, 2022, 43, 1870-1878.	6.9	9
139	AuPt core-shell electrocatalysts for oxygen reduction reaction through combining the spontaneous Pt deposition and redox replacement of underpotential-deposited Cu. International Journal of Hydrogen Energy, 2016, 41, 22976-22982.	3.8	8
140	Reactionâ€Kineticsâ€īuned Synthesis of Platinum Nanorods and Nanodendrites with Enhanced Electrocatalytic Performance for Oxygen Reduction. ChemElectroChem, 2016, 3, 2281-2287.	1.7	7
141	In-Situ Formed Micropores as Footholds Enabling Well-Dispersed High-Density Fe-Nx Active Sites for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 0, , .	1.5	5
142	Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction. Wuhan University Journal of Natural Sciences, 2013, 18, 289-294.	0.2	4
143	Electrical Double-Layer Effects on Electron Transfer and Ion Transport at the Nanoscale. , 2015, , 29-70.		4
144	Unexpected role of electronic coupling between host redox centers in transport kinetics of lithium ions in olivine phosphate materials. Chemical Science, 2021, 13, 257-262.	3.7	4

#	Article	IF	CITATIONS
145	Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations. Science China Chemistry, 2010, 53, 411-418.	4.2	3
146	Defect density engineering for better graphene performance. Science China Chemistry, 2015, 58, 433-433.	4.2	2
147	Reactions at the nanoscale: general discussion. Faraday Discussions, 2016, 193, 265-292.	1.6	1
148	A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. Chemical Research in Chinese Universities, 0, , 1.	1.3	1
149	A big step forward to graphene-based atomic hydrogen storage. Science China Chemistry, 2022, 65, 197-198.	4.2	1
150	Monolayer Crystals: Ultrafast Self-Limited Growth of Strictly Monolayer WSe ₂ Crystals (Small 41/2016). Small, 2016, 12, 5780-5780.	5.2	0
151	Fabrication of Soft-Oxometalates {Mo132} Clusters With Novel Azobenzene Surfactants: Size Control by Micelles and Light. Frontiers in Chemistry, 2021, 9, 625077.	1.8	0