
Hanano Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11721996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adult mosquito predation and potential impact on the sterile insect technique. Scientific Reports, 2022, 12, 2561.	3.3	1
2	Radiation dose-rate is a neglected critical parameter in dose–response of insects. Scientific Reports, 2022, 12, 6242.	3.3	6
3	Does Tap Water Quality Compromise the Production of Aedes Mosquitoes in Genetic Control Projects?. Insects, 2021, 12, 57.	2.2	3
4	The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010–2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. Insects, 2021, 12, 346.	2.2	26
5	Characterization and dose-mapping of an X-ray blood irradiator to assess application potential for the sterile insect technique (SIT). Applied Radiation and Isotopes, 2021, 176, 109859.	1.5	11
6	Assessment of a Novel Adult Mass-Rearing Cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton). Insects, 2020, 11, 801.	2.2	7
7	Toward implementation of combined incompatible and sterile insect techniques for mosquito control: Optimized chilling conditions for handling Aedes albopictus male adults prior to release. PLoS Neglected Tropical Diseases, 2020, 14, e0008561.	3.0	21
8	High sensitivity of one-step real-time reverse transcription quantitative PCR to detect low virus titers in large mosquito pools. Parasites and Vectors, 2020, 13, 460.	2.5	5
9	<i>Aedes aegypti</i> larval development and pupal production in the FAO/IAEA mass-rearing rack and factors influencing sex sorting efficiency. Parasite, 2020, 27, 43.	2.0	12
10	Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique. Trends in Parasitology, 2020, 36, 325-336.	3.3	64
11	Demonstration of resistance to satyrization behavior in <i>Aedes aegypti</i> from La Réunion island. Parasite, 2020, 27, 22.	2.0	9
12	The role of oxygen depletion and subsequent radioprotective effects during irradiation of mosquito pupae in water. Parasites and Vectors, 2020, 13, 198.	2.5	17
13	Insects to feed insects - feeding Aedes mosquitoes with flies for laboratory rearing. Scientific Reports, 2019, 9, 11403.	3.3	13
14	Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasites and Vectors, 2019, 12, 435.	2.5	36
15	Black soldier fly (<i>Hermetia illucens</i>) larvae powder as a larval diet ingredient for mass-rearing <i>Aedes</i> mosquitoes. Parasite, 2019, 26, 57.	2.0	13
16	Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLoS Neglected Tropical Diseases, 2019, 13, e0007775.	3.0	20
17	Mosquito mass rearing: who's eating the eggs?. Parasite, 2019, 26, 75.	2.0	7
18	A rapid quality control test to foster the development of genetic control in mosquitoes. Scientific Reports, 2018, 8, 16179.	3.3	56

HANANO YAMADA

#	Article	IF	CITATIONS
19	Optimization of Mass-Rearing Methods for Anopheles arabiensis Larval Stages: Effects of Rearing Water Temperature and Larval Density on Mosquito Life-History Traits. Journal of Economic Entomology, 2018, 111, 2383-2390.	1.8	23
20	Establishment of a medium-scale mosquito facility: tests on mass production cages for Aedes albopictus (Diptera: Culicidae). Parasites and Vectors, 2018, 11, 189.	2.5	26
21	Reverse osmosis and ultrafiltration for recovery and reuse of larval rearing water in Anopheles arabiensis mass production: Effect of water quality on larval development and fitness of emerging adults. Acta Tropica, 2017, 170, 126-133.	2.0	4
22	Enhancements to the massâ€rearing cage for the malaria vector, <i><scp>A</scp>nopheles arabiensis</i> for improved adult longevity and egg production. Entomologia Experimentalis Et Applicata, 2017, 164, 269-275.	1.4	10
23	Does mosquito mass-rearing produce an inferior mosquito?. Malaria Journal, 2017, 16, 357.	2.3	18
24	Establishment of a medium-scale mosquito facility: optimization of the larval mass-rearing unit for Aedes albopictus (Diptera: Culicidae). Parasites and Vectors, 2017, 10, 569.	2.5	24
25	Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera:) Tj ETQq1 1 0.784314	rgBT /Ov 2.5	erlock 10 Tf
26	Evaluation of radiation sensitivity and mating performance of Glossina brevipalpis males. PLoS Neglected Tropical Diseases, 2017, 11, e0005473.	3.0	15
27	The Anopheles arabiensis genetic sexing strain ANO IPCL1 and its application potential for the sterile insect technique in integrated vector management programmes. Acta Tropica, 2015, 142, 138-144.	2.0	23
28	Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) - I - egg quantification. Parasites and Vectors, 2015, 8, 42.	2.5	58
29	The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malaria Journal, 2014, 13, 318.	2.3	34
30	Anopheles arabiensis egg treatment with dieldrin for sex separation leaves residues in male adult mosquitoes that can bioaccumulate in goldfish (Carassius auratus auratus). Environmental Toxicology and Chemistry, 2013, 32, 2786-2791.	4.3	13
31	Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malaria Journal, 2012, 11, 208.	2.3	40
32	Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6