
Ophir Shalem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11721945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Research, 2022, 82, 1890-1908.	0.4	6
2	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	7.7	184
3	Efficient and flexible tagging of endogenous genes by homology-independent intron targeting. Genome Research, 2019, 29, 1322-1328.	2.4	20
4	The Hyaluronidase, TMEM2, Promotes ER Homeostasis and Longevity Independent of the UPRER. Cell, 2019, 179, 1306-1318.e18.	13.5	87
5	Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nature Protocols, 2018, 13, 946-986.	5.5	70
6	CRISPR mutagenesis screening of mice. Nature Cell Biology, 2018, 20, 1235-1237.	4.6	3
7	CAR T Cell Cytotoxicity Is Dependent on Death Receptor-Driven Apoptosis. Blood, 2018, 132, 698-698.	0.6	1
8	Transcription control by the ENL YEATS domain in acute leukaemia. Nature, 2017, 543, 270-274.	13.7	248
9	CRISPRing the Regulatory Genome, the Challenge Ahead. Trends in Genetics, 2017, 33, 580-582.	2.9	0
10	Identification of essential genes for cancer immunotherapy. Nature, 2017, 548, 537-542.	13.7	668
11	High-resolution interrogation of functional elements in the noncoding genome. Science, 2016, 353, 1545-1549.	6.0	251
12	Hypoxia as a therapy for mitochondrial disease. Science, 2016, 352, 54-61.	6.0	339
13	Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell, 2015, 160, 1246-1260.	13.5	746
14	A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162, 675-686.	13.5	383
15	Systematic Dissection of the Sequence Determinants of Gene 3' End Mediated Expression Control. PLoS Genetics, 2015, 11, e1005147.	1.5	70
16	In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520, 186-191.	13.7	2,237
17	High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 2015, 16, 299-311.	7.7	998
18	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527, 192-197.	13.7	726

OPHIR SHALEM

#	Article	IF	CITATIONS
19	Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 2014, 343, 84-87.	6.0	4,210
20	Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods, 2014, 11, 783-784.	9.0	4,032
21	DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31, 827-832.	9.4	3,953
22	Measurements of the Impact of 3′ End Sequences on Gene Expression Reveal Wide Range and Sequence Dependent Effects. PLoS Computational Biology, 2013, 9, e1002934.	1.5	31
23	Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO Journal, 2012, 31, 1350-1363.	3.5	241
24	Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biology, 2012, 13, R114.	13.9	39
25	Transcriptome Kinetics Is Governed by a Genome-Wide Coupling of mRNA Production and Degradation: A Role for RNA Pol II. PLoS Genetics, 2011, 7, e1002273.	1.5	79
26	Signaling to Transcription Networks in the Neuronal Retrograde Injury Response. Science Signaling, 2010, 3, ra53.	1.6	159
27	Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Molecular Systems Biology, 2008, 4, 223.	3.2	169