Hyuksu Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11719676/publications.pdf

Version: 2024-02-01

186265 206112 2,429 49 28 48 h-index citations g-index papers 49 49 49 3198 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Engineering [Fe(CN)6]3â^ vacancy via free-chelating agents in Prussian blue analogues on reduced graphene oxide for efficient oxygen evolution reaction. Applied Surface Science, 2022, 574, 151620.	6.1	15
2	CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions. Nanomaterials, 2022, 12, 983.	4.1	9
3	Simultaneous electrical and defect engineering of nickel iron metal-organic-framework via co-doping of metalloid and non-metal elements for a highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 439, 135720.	12.7	41
4	Computational atomicâ€scale design and experimental verification for layered double hydroxide as an efficient alkaline oxygen evolution reaction catalyst. International Journal of Energy Research, 2022, 46, 11972-11988.	4.5	6
5	High-power energy harvesting and imperceptible pulse sensing through peapod-inspired hierarchically designed piezoelectric nanofibers. Nano Energy, 2022, 99, 107386.	16.0	20
6	Inâ€situ formation of an efficient trimetallic (<scp>Cu</scp>  <scp>Zn</scp>  <scp>Ag</scp>) electrocatalyst for water oxidation. International Journal of Energy Research, 2021, 45, 2931-2944.	4.5	4
7	Pulsed Laser Confinement of Single Atomic Catalysts on Carbon Nanotube Matrix for Enhanced Oxygen Evolution Reaction. ACS Nano, 2021, 15, 4416-4428.	14.6	29
8	Niâ€Feâ€Cuâ€layered double hydroxides as highâ€performance electrocatalysts for alkaline water oxidation. International Journal of Energy Research, 2021, 45, 15312-15322.	4.5	13
9	Ni-doped carbon nanotubes fabricated by pulsed laser ablation in liquid as efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science, 2021, 547, 149197.	6.1	17
10	Amorphous Nickel–Iron Borophosphate for a Robust and Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2100624.	19.5	120
11	Enhanced photoelectrochemical characteristic of TiO2 nanotubes via surface plasma treatment. Ceramics International, 2021, 47, 30741-30746.	4.8	5
12	Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni–Fe–Al–Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. Journal of Materials Chemistry A, 2021, 9, 27332-27346.	10.3	33
13	Study of multi-faceted CoS2 introduced graphene aerogel hybrids via chemical approach for an effective electrocatalytic water splitting. Current Applied Physics, 2021, 32, 78-85.	2.4	11
14	Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy, 2020, 67, 104245.	16.0	79
15	Dualâ€Phase Engineering of Nickel Borideâ€Hydroxide Nanoparticles toward Highâ€Performance Water Oxidation Electrocatalysts. Advanced Functional Materials, 2020, 30, 2004330.	14.9	44
16	Self-supported vanadium-incorporated cobalt phosphide as a highly efficient bifunctional electrocatalyst for water splitting. Journal of Alloys and Compounds, 2020, 846, 156350.	5.5	23
17	Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Catalysts, 2020, 10, 1238.	3.5	13
18	Fundamental Understanding of the Formation Mechanism for Graphene Quantum Dots Fabricated by Pulsed Laser Fragmentation in Liquid: Experimental and Theoretical Insight. Small, 2020, 16, 2003538.	10.0	13

#	Article	IF	CITATIONS
19	Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation. Nano Energy, 2020, 75, 104945.	16.0	47
20	Atomic Layer Depositionâ€Assisted Fabrication of Coâ€Nanoparticle/Nâ€Doped Carbon Nanotube Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Small, 2020, 16, e2002427.	10.0	51
21	Current Status of Selfâ€Supported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer. ChemCatChem, 2019, 11, 5898-5912.	3.7	47
22	Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. Journal of Materials Chemistry A, 2019, 7, 3592-3602.	10.3	81
23	Polarized Electronic Configuration in Transition Metal–Fluoride Oxide Hollow Nanoprism for Highly Efficient and Robust Water Splitting. ACS Applied Energy Materials, 2019, 2, 3999-4007.	5.1	24
24	Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy and Environmental Science, 2019, 12, 2443-2454.	30.8	315
25	Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Advances, 2019, 9, 13658-13663.	3.6	30
26	Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Scientific Reports, 2019, 9, 4101.	3.3	57
27	Electronically Doubleâ€Layered Metal Boride Hollow Nanoprism as an Excellent and Robust Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1803799.	19.5	74
28	Self-templated Prussian blue analogue for efficient and robust electrochemical water oxidation. Journal of Catalysis, 2019, 369, 168-174.	6.2	30
29	Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Applied Catalysis B: Environmental, 2019, 241, 521-527.	20.2	197
30	Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfideâ€"Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis, 2018, 8, 4091-4102.	11.2	116
31	The effect of pH control on synthesis of Sr doped barium titanate nanopowder by oxalate precipitation method. Ceramics International, 2018, 44, 1420-1424.	4.8	16
32	Effect of Fe incorporation on cation distributions and hopping conductions in Ni-Mn-Co-O spinel oxides. Journal of Alloys and Compounds, 2018, 732, 486-490.	5.5	39
33	Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions. Royal Society Open Science, 2018, 5, 180927.	2.4	14
34	An Intriguing Peaâ€Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogenâ€Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting. ChemSusChem, 2018, 11, 3956-3964.	6.8	55
35	Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO ₂ rutile nanoceramics. Physical Chemistry Chemical Physics, 2017, 19, 8568-8574.	2.8	46
36	Hopping conduction in (Ni,Co,Mn)O4 prepared by different synthetic routes: Conventional and spark plasma sintering. Ceramics International, 2017, 43, 16070-16075.	4.8	8

#	Article	IF	CITATIONS
37	Ultrafast Method for Selective Design of Graphene Quantum Dots with Highly Efficient Blue Emission. Scientific Reports, 2016, 6, 38423.	3.3	45
38	Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in Balâ^'x Sr x TiO3â^'l´ nanoceramics. Journal of Materials Science, 2016, 51, 7440-7450.	3.7	11
39	Fabrication and testing of antimony doped bismuth tri-iodide semiconductor gamma-ray detectors. Radiation Measurements, 2016, 91, 1-8.	1.4	7
40	Effect of High Cobalt Concentration on Hopping Motion in Cobalt Manganese Spinel Oxide (Co _{<i>x</i>} Mn _{3â€"<i>x</i>} O ₄ , <i>x</i> ≥ 2.3). Journal of Physical Chemistry C, 2016, 120, 13667-13674.	3.1	33
41	Colossal permittivity and low losses in Ba1–Sr TiO3– reduced nanoceramics. Journal of the European Ceramic Society, 2016, 36, 567-575.	5.7	27
42	Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO ₂ nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering. Physical Chemistry Chemical Physics, 2015, 17, 16864-16875.	2.8	51
43	Domain Wall Displacement is the Origin of Superior Permittivity and Piezoelectricity in BaTiO ₃ at Intermediate Grain Sizes. Advanced Functional Materials, 2014, 24, 885-896.	14.9	164
44	Defect Engineering of Bil ₃ Single Crystals: Enhanced Electrical and Radiation Performance for Room Temperature Gamma-Ray Detection. Journal of Physical Chemistry C, 2014, 118, 3244-3250.	3.1	72
45	Variable Range Hopping Conduction in BaTiO ₃ Ceramics Exhibiting Colossal Permittivity. Journal of Physical Chemistry C, 2014, 118, 9137-9142.	3.1	79
46	Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy. Journal of Applied Physics, 2013, 113, .	2.5	86
47	Influence of Oxygen Substoichiometry on the Dielectric Properties of BaTiO _{3â€Î} Nanoceramics Obtained by Spark Plasma Sintering. International Journal of Applied Ceramic Technology, 2013, 10, E122.	2.1	29
48	Colossal Permittivity in Microwaveâ€Sintered Barium Titanate and Effect of Annealing on Dielectric Properties. Journal of the American Ceramic Society, 2013, 96, 485-490.	3.8	39
49	Synthesis of <scp><scp>BaTiO</scp></scp> 3â€20wt% <scp><scp>CoFe</scp></scp> 2 <scp><scp 2012,="" 95<="" american="" ceramic="" journal="" nanocomposites="" of="" plasma="" sintering,="" society,="" spark="" td="" the="" via=""><td>>O</td><td></td></scp></scp>	>O	