
Michael E Gorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11718642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Causal inference in disease ecology: investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 2008, 6, 420-429.	4.0	261
2	The Psychology of Science: Review and Integration of a Nascent Discipline. Review of General Psychology, 1998, 2, 3-47.	3.2	214
3	Types of Knowledge and Their Roles in Technology Transfer. Journal of Technology Transfer, 2002, 27, 219-231.	4.3	102
4	Mapping the integrative field: taking stock of socio-technical collaborations. Journal of Responsible Innovation, 2015, 2, 39-61.	4.9	99
5	Identification of Risks in the Life Cycle of Nanotechnologyâ€Based Products. Journal of Industrial Ecology, 2008, 12, 435-448.	5.5	94
6	A Comparison of Disconfirmatory, Confirmatory and Control Strategies on Wason's 2–4–6 Task. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1984, 36, 629-648.	2.3	90
7	How the possibility of error affects falsification on a task that models scientific problem solving. British Journal of Psychology, 1986, 77, 85-96.	2.3	87
8	Confirmation, disconfirmation, and invention: The case of Alexander Graham Bell and the telephone. Thinking and Reasoning, 1995, 1, 31-53.	3.2	82
9	Error, Falsification and Scientific Inference: An Experimental Investigation. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1989, 41, 385-412.	2.3	65
10	Disconfirmation and Dual Hypotheses on a more Difficult version of Wason's 2–4–6 Task. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1987, 39, 1-28.	2.3	58
11	Levels of Expertise and Trading Zones: A Framework for Multidisciplinary Collaboration. Social Studies of Science, 2002, 32, 933-938.	2.5	51
12	How disconfirmatory, confirmatory and combined strategies affect group problem solving. British Journal of Psychology, 1984, 75, 65-79.	2.3	43
13	Mind in the World: Cognition and Practice in the Invention of the Telephone. Social Studies of Science, 1997, 27, 583-624.	2.5	41
14	Acquisition of T-shaped expertise: an exploratory study. Social Epistemology, 2017, 31, 165-183.	1.2	39
15	Moral Imagination, Trading Zones, and the Role of the Ethicist in Nanotechnology. NanoEthics, 2009, 3, 185-195.	0.8	29
16	Understanding Invention as a Cognitive Process: The Case of Thomas Edison and Early Motion Pictures, 1888-91. Social Studies of Science, 1990, 20, 387-430.	2.5	28
17	Turning Students into Professionals: Types of Knowledge and ABET Engineering Criteria. Journal of Engineering Education, 2002, 91, 327-332.	3.0	19
18	Using Trading Zones and Life Cycle Analysis to Understand Nanotechnology Regulation. Journal of Law, Medicine and Ethics, 2006, 34, 695-703.	0.9	15

MICHAEL E GORMAN

#	Article	IF	CITATIONS
19	Scientific and Technological Thinking. Review of General Psychology, 2006, 10, 113-129.	3.2	15
20	Collaborating on Convergent Technologies: Education and Practice. Annals of the New York Academy of Sciences, 2004, 1013, 25-37.	3.8	14
21	Using History to Teach Invention and Design: The Case of the Telephone. Science and Education, 1998, 7, 173-201.	2.7	11
22	Using Expert Elicitation to Prioritize Resource Allocation for Risk Identification for Nanosilver. Journal of Law, Medicine and Ethics, 2009, 37, 770-780.	0.9	8
23	STS, Ethics, and Knowledge Transfer in the Courtroom. Social Studies of Science, 2006, 36, 861-866.	2.5	6
24	Earth systems engineering management: human behavior, technology and sustainability. Resources, Conservation and Recycling, 2005, 44, 201-213.	10.8	5
25	Trading Zones, Moral Imagination and Socially Sensitive Computing. Foundations of Science, 2008, 13, 89-97.	0.7	5
26	A Framework for Using Nanotechnology To Improve Water Quality. , 2009, , 491-507.		4
27	Integrating Ethicists and Social Scientists into Cutting Edge Research and Technological Development. Philosophy of Engineering and Technology, 2013, , 157-173.	0.3	4
28	heuristics, moral imagination, and the future of technology. Behavioral and Brain Sciences, 2005, 28, 551-551.	0.7	2
29	Heuristics in technoscientific thinking. Behavioral and Brain Sciences, 2000, 23, 752-752.	0.7	1
30	A Framework for Anticipatory Governance and Adaptive Management of Synthetic Biology. International Journal of Social Ecology and Sustainable Development, 2012, 3, 64-68.	0.2	1
31	A. Jean Ayres and the development of sensory integration: a case study in the development and fragmentation of a scientific therapy network. Social Epistemology, 2017, 31, 107-129.	1.2	1
32	Collaboration Among Apparently Incommensurable Expertises: A Case Study of Combining Expertises and Perspectives to Manage Climate Change in Coastal Virginia. , 2019, , 255-272.		1
33	Replication, reliability and peer review: A case study. Behavioral and Brain Sciences, 1991, 14, 149-149.	0.7	0
34	Implicit knowledge in engineering judgment and scientific reasoning. Behavioral and Brain Sciences, 1999, 22, 767-768.	0.7	0
35	A Framework for Using Nanotechnology to Improve Water Quality. , 2014, , 557-572.		Ο