R Scott Struthers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11717959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Desensitization, Receptor Phosphorylation, β-Arrestin Recruitment, and ERK1/2 Activation by the Two Endogenous Ligands for the CC Chemokine Receptor 7. Journal of Biological Chemistry, 2004, 279, 23214-23222.	3.4	291
2	Discovery of Sodium <i>R</i> -(+)-4-{2-[5-(2-Fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6- (Elagolix), a Potent and Orally Available Nonpeptide Antagonist of the Human Gonadotropin-Releasing Hormone Receptor, Journal of Medicinal Chemistry, 2008, 51, 7478-7485.	dihydro-2 <i: 6.4</i: 	→H-pyrimid
3	Suppression of Gonadotropins and Estradiol in Premenopausal Women by Oral Administration of the Nonpeptide Gonadotropin-Releasing Hormone Antagonist Elagolix. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 545-551.	3.6	103
4	Distinct Conformations of the Corticotropin Releasing Factor Type 1 Receptor Adopted following Agonist and Antagonist Binding Are Differentially Regulated. Journal of Biological Chemistry, 2005, 280, 11560-11568.	3.4	59
5	3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)- 6-methylpyrimidin-2,4-dione (NBI 42902) as a Potent and Orally Active Antagonist of the Human Gonadotropin-Releasing Hormone Receptor. Design, Synthesis, and in Vitro and in Vivo Characterization, Journal of Medicinal Chemistry, 2005, 48, 1169-1178.	6.4	52
6	Non-Peptide Gonadotropin-Releasing Hormone Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 3331-3348.	6.4	52
7	Design of biologically active, conformationally constrained GnRH antagonists. Proteins: Structure, Function and Bioinformatics, 1990, 8, 295-304.	2.6	49
8	Nuclear magnetic resonance analysis and conformational characterization of a cyclic decapeptide antagonist of gonadotropin-releasing hormone. Biochemistry, 1987, 26, 2642-2656.	2.5	45
9	Synthesis and Structureâ^'Activity Relationships of 1-Arylmethyl-5-aryl-6-methyluracils as Potent Gonadotropin-Releasing Hormone Receptor Antagonists. Journal of Medicinal Chemistry, 2004, 47, 1259-1271.	6.4	44
10	Overlapping, Nonidentical Binding Sites of Different Classes of Nonpeptide Antagonists for the Human Gonadotropin-Releasing Hormone Receptor. Journal of Medicinal Chemistry, 2006, 49, 637-647.	6.4	40
11	Consensus Bioactive Conformation of Cyclic GnRH Antagonists Defined by NMR and Molecular Modelingâ€. Journal of Medicinal Chemistry, 2000, 43, 819-828.	6.4	34
12	Design and Structureâ^'Activity Relationships of 2-Alkyl-3-aminomethyl-6-(3-methoxyphenyl)-7-methyl-8-(2-fluorobenzyl)imidazolo[1,2-a]pyrimid-5-ones as Potent GnRH Receptor Antagonists. Journal of Medicinal Chemistry, 2003, 46, 1769-1772.	6.4	33
13	Suppression of Serum Luteinizing Hormone in Postmenopausal Women by an Orally Administered Nonpeptide Antagonist of the Gonadotropin-Releasing Hormone Receptor (NBI-42902). Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3903-3907.	3.6	31
14	Kinetics of nonpeptide antagonist binding to the human gonadotropin-releasing hormone receptor: Implications for structure–activity relationships and insurmountable antagonism. Biochemical Pharmacology, 2006, 72, 838-849.	4.4	31
15	Synthesis and initial structure–Activity relationships of a novel series of imidazolo[1,2-a]pyrimid-5-ones as potent GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2179-2183.	2.2	30
16	Pharmacological Characterization of a Novel Nonpeptide Antagonist of the Human Gonadotropin-Releasing Hormone Receptor, NBI-42902. Endocrinology, 2007, 148, 857-867.	2.8	29
17	Initial Structure–Activity Relationship Studies of a Novel Series of Pyrrolo[1,2-a]pyrimid-7-ones as GnRH Receptor Antagonists. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 399-402.	2.2	28
18	A novel synthesis of 7-aryl-8-fluoro-pyrrolo[1,2-a]pyrimid-4-ones as potent, stable GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3491-3495.	2.2	28

R Scott Struthers

#	Article	IF	CITATIONS
19	3-(2-Aminoalkyl)-1-(2,6-difluorobenzyl)-5- (2-fluoro-3-methoxyphenyl)-6-methyl- uracils as Orally Bioavailable Antagonists of the Human Gonadotropin Releasing Hormone Receptor. Journal of Medicinal Chemistry, 2004, 47, 3483-3486.	6.4	26
20	Synthesis and structure–Activity relationships of thieno[2,3- d]pyrimidine-2,4-dione derivatives as potent GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3617-3622.	2.2	25
21	Design of Potent Dicyclic (4â^'10/5â^'8) Gonadotropin Releasing Hormone (GnRH) Antagonists. Journal of Medicinal Chemistry, 2000, 43, 784-796.	6.4	24
22	Synthesis and Structure–activity relationships of 1-arylmethyl-3-(1-methyl-2-amino)ethyl-5-aryl-6-methyluracils as antagonists of the human GnRH Receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3317-3322.	2.2	24
23	Identification of 1-Arylmethyl-3- (2-aminoethyl)-5-aryluracil as Novel Gonadotropin-Releasing Hormone Receptor Antagonists. Journal of Medicinal Chemistry, 2003, 46, 2023-2026.	6.4	24
24	A convenient one-pot synthesis of asymmetric 1,3,5-triazine-2,4,6-triones and its application towards a novel class of gonadotropin-releasing hormone receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 693-698.	2.2	24
25	A Novel Synthesis of 2-Arylpyrrolo[1,2-a]pyrimid-7-ones and Their Structure–Activity Relationships as Potent GnRH Receptor Antagonists. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 403-406.	2.2	23
26	Identification of CC Chemokine Receptor 7 Residues Important for Receptor Activation. Journal of Biological Chemistry, 2004, 279, 42383-42392.	3.4	23
27	Synthesis of aryl-1,2,4-triazine-3,5-diones as antagonists of the gonadotropin-releasing hormone receptor. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4363-4366.	2.2	23
28	Species Selectivity of Nonpeptide Antagonists of the Gonadotropinreleasing Hormone Receptor Is Determined by Residues in Extracellular Loops II and III and the Amino Terminus. Journal of Biological Chemistry, 2004, 279, 34115-34122.	3.4	22
29	Design, synthesis and structure–Activity relationships of novel imidazolo[1,2-a]pyrimid-5-ones as potent GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2185-2187.	2.2	20
30	Zwitterionic uracil derivatives as potent GnRH receptor antagonists with improved pharmaceutical properties. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4503-4507.	2.2	20
31	Design of Monocyclic (1â^'3) and Dicyclic (1â^'3/4â^'10) Gonadotropin Releasing Hormone (GnRH) Antagonistsâ€. Journal of Medicinal Chemistry, 2000, 43, 797-806.	6.4	19
32	Synthesis and structure–activity relationships of (R) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td ()-1-alkyl-3- antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2269-2274.	[2-(2-ami 2.2	no)phenethyl]- 19
33	Synthesis and Structure–Activity relationships of 1-arylmethyl-3-(2-aminopropyl)-5-aryl-6-methyluracils as potent GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3311-3315.	2.2	18
34	Atropisomeric property of 1-(2,6-difluorobenzyl)-3-[(2R)-amino-2-phenethyl]-5-(2-fluoro-3-methoxyphenyl)-6-methyluracil. Chirality, 2005, 17, 559-564.	2.6	17
35	Design of Potent Dicyclic (1â^'5/4â^'10) Gonadotropin Releasing Hormone (GnRH) Antagonistsâ€. Journal of Medicinal Chemistry, 2000, 43, 807-818.	6.4	16
36	Trapping of a Nonpeptide Ligand by the Extracellular Domains of the Gonadotropin-Releasing Hormone Receptor Results in Insurmountable Antagonism. Molecular Pharmacology, 2007, 72, 238-247.	2.3	15

R Scott Struthers

#	Article	IF	CITATIONS
37	Potent and orally bioavailable zwitterion GnRH antagonists with low CYP3A4 inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3301-3305.	2.2	15
38	Synthesis and structure–activity relationships of uracil derived human GnRH receptor antagonists: (R)-3-[2-(2-amino)phenethyl]-1-(2,6-difluorobenzyl)-6-methyluracils containing a substituted thiophene or thiazole at C-5. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4967-4973.	2.2	14
39	A high-throughput chemotaxis assay for pharmacological characterization of chemokine receptors: Utilization of U937 monocytic cells. Journal of Pharmacological and Toxicological Methods, 2005, 51, 105-114.	0.7	12
40	Structure–activity relationships of 1,3,5-triazine-2,4,6-triones as human gonadotropin-releasing hormone receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3685-3690.	2.2	12
41	Allosteric and Orthosteric Binding Modes of Two Nonpeptide Human Gonadotropin-Releasing Hormone Receptor Antagonists. Biochemistry, 2006, 45, 15327-15337.	2.5	11
42	Paltusotine, a novel oral once-daily nonpeptide SST2 receptor agonist, suppresses GH and IGF-1 in healthy volunteers. Pituitary, 2022, 25, 328-339.	2.9	11
43	Identification of 2-(4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridin-3-yl)-ethylamine derivatives as novel GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3845-3850.	2.2	10
44	5-Aryluracils as potent GnRH antagonists—Characterization of atropisomers. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3344-3349.	2.2	10
45	Nonpeptide Conadotropin Releasing Hormone Antagonists. Annual Reports in Medicinal Chemistry, 2004, 39, 99-110.	0.9	8
46	Determination of the Binding Mode of Thienopyrimidinedione Antagonists to the Human Gonadotropin Releasing Hormone Receptor Using Structureâ "Activity Relationships, Site-Directed Mutagenesis, and Homology Modeling. Journal of Medicinal Chemistry, 2006, 49, 6170-6176.	6.4	7
47	Discovery of nonpeptide 3,4-dihydroquinazoline-4-carboxamides as potent and selective sst2 agonists. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127391.	2.2	5
48	Discovery of substituted 3H-pyrido[2,3-d]pyrimidin-4-ones as potent, biased, and orally bioavailable sst2 agonist. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127496.	2.2	3
49	Discovery of 4-(3-aminopyrrolidinyl)-3-aryl-5-(benzimidazol-2-yl)-pyridines as potent and selective SST5 agonists for the treatment of congenital hyperinsulinism. Bioorganic and Medicinal Chemistry Letters, 2022, 71, 128807.	2.2	2
50	A Novel Synthesis of 7-Aryl-8-fluoro-pyrrolo[1,2-a]pyrimid-4-ones as Potent, Stable GnRH Receptor Antagonists ChemInform, 2003, 34, no.	0.0	0
51	Synthesis and Structure—Activity Relationships of 1-Arylmethyl-3-(2-aminopropyl)-5-aryl-6-methyluracils as Potent GnRH Receptor Antagonists ChemInform, 2004, 35, no.	0.0	0
52	Synthesis and Structure—Activity Relationships of Thieno[2,3-d]pyrimidine-2,4-dione Derivatives as Potent GnRH Receptor Antagonists ChemInform, 2004, 35, no.	0.0	0
53	Synthesis and Structure—Activity Relationships of (R)-1-Alkyl-3-[2-(2-amino)phenethyl]-5-(2-fluorophenyl)-6-methyluracils as Human GnRH Receptor Antagonists ChemInform, 2004, 35, no.	0.0	0
54	A Convenient One-Pot Synthesis of Asymmetric 1,3,5-Triazine-2,4,6-triones and Its Application Towards a Novel Class of Gonadotropin-Releasing Hormone Receptor Antagonists ChemInform, 2005, 36, no.	0.0	0